A neuroevolutionary approach to feature selection using multiobjective evolutionary algorithms
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/68642 |
Resumo: | First Online: 24 November 2020 |
id |
RCAP_5d52de76cbead56ae769fe9e5f3e81fa |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/68642 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A neuroevolutionary approach to feature selection using multiobjective evolutionary algorithmsFeature selectionMulti-objective optimizationNeuroevolutionaryCiências Naturais::Ciências da Computação e da InformaçãoFirst Online: 24 November 2020Feature selection plays a central role in predictive analysis where datasets have hundreds or thousands of variables available. It can also reduce the overall training time and the computational costs of the classifiers used. However, feature selection methods can be computationally intensive or dependent of human expertise to analyze data. This study proposes a neuroevolutionary approach which uses multiobjective evolutionary algorithms to optimize neural network parameters in order to find the best network able to identify the most important variables of analyzed data. Classification is done through a Support Vector Machine (SVM) classifier where specific parameters are also optimized. The method is applied to datasets with different number of features and classes.This work has been supported by FCT - Fundação para a Ciência e Tecnologia in the scope of the projects: PEst-OE/EEI/UI0319/2014, UID/MAT/00013/2013, UID/CEC/00319/2019 and the European project MSCA-RISE-2015, NEWEX, with reference 734205.SpringerUniversidade do MinhoPinto, Renê SouzaCosta, M. Fernanda P.Costa, LinoGaspar-Cunha, A.20212021-01-01T00:00:00Zbook partinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/1822/68642engPinto R.S., Costa M.F.P., Costa L.A., Gaspar-Cunha A. (2021) A Neuroevolutionary Approach to Feature Selection Using Multiobjective Evolutionary Algorithms. In: Gaspar-Cunha A., Periaux J., Giannakoglou K.C., Gauger N.R., Quagliarella D., Greiner D. (eds) Advances in Evolutionary and Deterministic Methods for Design, Optimization and Control in Engineering and Sciences. Computational Methods in Applied Sciences, vol 55. Springer, Cham. https://doi.org/10.1007/978-3-030-57422-2_6978-3-030-57421-51871-303310.1007/978-3-030-57422-2_6978-3-030-57422-2https://link.springer.com/chapter/10.1007%2F978-3-030-57422-2_6info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-11T04:27:36Zoai:repositorium.sdum.uminho.pt:1822/68642Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-11T04:27:36Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A neuroevolutionary approach to feature selection using multiobjective evolutionary algorithms |
title |
A neuroevolutionary approach to feature selection using multiobjective evolutionary algorithms |
spellingShingle |
A neuroevolutionary approach to feature selection using multiobjective evolutionary algorithms Pinto, Renê Souza Feature selection Multi-objective optimization Neuroevolutionary Ciências Naturais::Ciências da Computação e da Informação |
title_short |
A neuroevolutionary approach to feature selection using multiobjective evolutionary algorithms |
title_full |
A neuroevolutionary approach to feature selection using multiobjective evolutionary algorithms |
title_fullStr |
A neuroevolutionary approach to feature selection using multiobjective evolutionary algorithms |
title_full_unstemmed |
A neuroevolutionary approach to feature selection using multiobjective evolutionary algorithms |
title_sort |
A neuroevolutionary approach to feature selection using multiobjective evolutionary algorithms |
author |
Pinto, Renê Souza |
author_facet |
Pinto, Renê Souza Costa, M. Fernanda P. Costa, Lino Gaspar-Cunha, A. |
author_role |
author |
author2 |
Costa, M. Fernanda P. Costa, Lino Gaspar-Cunha, A. |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Pinto, Renê Souza Costa, M. Fernanda P. Costa, Lino Gaspar-Cunha, A. |
dc.subject.por.fl_str_mv |
Feature selection Multi-objective optimization Neuroevolutionary Ciências Naturais::Ciências da Computação e da Informação |
topic |
Feature selection Multi-objective optimization Neuroevolutionary Ciências Naturais::Ciências da Computação e da Informação |
description |
First Online: 24 November 2020 |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021 2021-01-01T00:00:00Z |
dc.type.driver.fl_str_mv |
book part |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/68642 |
url |
http://hdl.handle.net/1822/68642 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Pinto R.S., Costa M.F.P., Costa L.A., Gaspar-Cunha A. (2021) A Neuroevolutionary Approach to Feature Selection Using Multiobjective Evolutionary Algorithms. In: Gaspar-Cunha A., Periaux J., Giannakoglou K.C., Gauger N.R., Quagliarella D., Greiner D. (eds) Advances in Evolutionary and Deterministic Methods for Design, Optimization and Control in Engineering and Sciences. Computational Methods in Applied Sciences, vol 55. Springer, Cham. https://doi.org/10.1007/978-3-030-57422-2_6 978-3-030-57421-5 1871-3033 10.1007/978-3-030-57422-2_6 978-3-030-57422-2 https://link.springer.com/chapter/10.1007%2F978-3-030-57422-2_6 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817544319163170816 |