Many-objectives optimization: a machine learning approach for reducing the number of objectives
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/1822/82466 |
Resumo: | Solving real-world multi-objective optimization problems using Multi-Objective Optimization Algorithms becomes difficult when the number of objectives is high since the types of algorithms generally used to solve these problems are based on the concept of non-dominance, which ceases to work as the number of objectives grows. This problem is known as the curse of dimensionality. Simultaneously, the existence of many objectives, a characteristic of practical optimization problems, makes choosing a solution to the problem very difficult. Different approaches are being used in the literature to reduce the number of objectives required for optimization. This work aims to propose a machine learning methodology, designated by FS-OPA, to tackle this problem. The proposed methodology was assessed using DTLZ benchmarks problems suggested in the literature and compared with similar algorithms, showing a good performance. In the end, the methodology was applied to a difficult real problem in polymer processing, showing its effectiveness. The algorithm proposed has some advantages when compared with a similar algorithm in the literature based on machine learning (NL-MVU-PCA), namely, the possibility for establishing variable–variable and objective–variable relations (not only objective–objective), and the elimination of the need to define/chose a kernel neither to optimize algorithm parameters. The collaboration with the DM(s) allows for the obtainment of explainable solutions. |
id |
RCAP_5db68066c11ffa0b703a15ab93605cec |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/82466 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Many-objectives optimization: a machine learning approach for reducing the number of objectivesobjectives reductiondata miningmulti-objective optimizationmany objectivesCiências Naturais::Ciências da Computação e da InformaçãoScience & TechnologySolving real-world multi-objective optimization problems using Multi-Objective Optimization Algorithms becomes difficult when the number of objectives is high since the types of algorithms generally used to solve these problems are based on the concept of non-dominance, which ceases to work as the number of objectives grows. This problem is known as the curse of dimensionality. Simultaneously, the existence of many objectives, a characteristic of practical optimization problems, makes choosing a solution to the problem very difficult. Different approaches are being used in the literature to reduce the number of objectives required for optimization. This work aims to propose a machine learning methodology, designated by FS-OPA, to tackle this problem. The proposed methodology was assessed using DTLZ benchmarks problems suggested in the literature and compared with similar algorithms, showing a good performance. In the end, the methodology was applied to a difficult real problem in polymer processing, showing its effectiveness. The algorithm proposed has some advantages when compared with a similar algorithm in the literature based on machine learning (NL-MVU-PCA), namely, the possibility for establishing variable–variable and objective–variable relations (not only objective–objective), and the elimination of the need to define/chose a kernel neither to optimize algorithm parameters. The collaboration with the DM(s) allows for the obtainment of explainable solutions.This research was funded by POR Norte under the PhD Grant PRT/BD/152192/2021. The authors also acknowledge the funding by FEDER funds through the COMPETE 2020 Programme and National Funds through FCT (Portuguese Foundation for Science and Technology) under the projects UIDB/05256/2020, and UIDP/05256/2020, the Center for Mathematical Sciences Applied to Industry (CeMEAI) and the support from the São Paulo Research Foundation (FAPESP grant No 2013/07375-0, the Center for Artificial Intelligence (C4AI-USP), the support from the São Paulo Research Foundation (FAPESP grant No 2019/07665-4) and the IBM Corporation.MDPIUniversidade do MinhoGaspar-Cunha, A.Costa, P.Monaco, F.Delbem, A.20232023-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/82466engGaspar-Cunha, A.; Costa, P.; Monaco, F.; Delbem, A. Many-Objectives Optimization: A Machine Learning Approach for Reducing the Number of Objectives. Math. Comput. Appl. 2023, 28, 17. https://doi.org/10.3390/mca280100171300-686X2297-874710.3390/mca28010017https://www.mdpi.com/2297-8747/28/1/17info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:17:34Zoai:repositorium.sdum.uminho.pt:1822/82466Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:10:14.647854Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Many-objectives optimization: a machine learning approach for reducing the number of objectives |
title |
Many-objectives optimization: a machine learning approach for reducing the number of objectives |
spellingShingle |
Many-objectives optimization: a machine learning approach for reducing the number of objectives Gaspar-Cunha, A. objectives reduction data mining multi-objective optimization many objectives Ciências Naturais::Ciências da Computação e da Informação Science & Technology |
title_short |
Many-objectives optimization: a machine learning approach for reducing the number of objectives |
title_full |
Many-objectives optimization: a machine learning approach for reducing the number of objectives |
title_fullStr |
Many-objectives optimization: a machine learning approach for reducing the number of objectives |
title_full_unstemmed |
Many-objectives optimization: a machine learning approach for reducing the number of objectives |
title_sort |
Many-objectives optimization: a machine learning approach for reducing the number of objectives |
author |
Gaspar-Cunha, A. |
author_facet |
Gaspar-Cunha, A. Costa, P. Monaco, F. Delbem, A. |
author_role |
author |
author2 |
Costa, P. Monaco, F. Delbem, A. |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Gaspar-Cunha, A. Costa, P. Monaco, F. Delbem, A. |
dc.subject.por.fl_str_mv |
objectives reduction data mining multi-objective optimization many objectives Ciências Naturais::Ciências da Computação e da Informação Science & Technology |
topic |
objectives reduction data mining multi-objective optimization many objectives Ciências Naturais::Ciências da Computação e da Informação Science & Technology |
description |
Solving real-world multi-objective optimization problems using Multi-Objective Optimization Algorithms becomes difficult when the number of objectives is high since the types of algorithms generally used to solve these problems are based on the concept of non-dominance, which ceases to work as the number of objectives grows. This problem is known as the curse of dimensionality. Simultaneously, the existence of many objectives, a characteristic of practical optimization problems, makes choosing a solution to the problem very difficult. Different approaches are being used in the literature to reduce the number of objectives required for optimization. This work aims to propose a machine learning methodology, designated by FS-OPA, to tackle this problem. The proposed methodology was assessed using DTLZ benchmarks problems suggested in the literature and compared with similar algorithms, showing a good performance. In the end, the methodology was applied to a difficult real problem in polymer processing, showing its effectiveness. The algorithm proposed has some advantages when compared with a similar algorithm in the literature based on machine learning (NL-MVU-PCA), namely, the possibility for establishing variable–variable and objective–variable relations (not only objective–objective), and the elimination of the need to define/chose a kernel neither to optimize algorithm parameters. The collaboration with the DM(s) allows for the obtainment of explainable solutions. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023 2023-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1822/82466 |
url |
https://hdl.handle.net/1822/82466 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Gaspar-Cunha, A.; Costa, P.; Monaco, F.; Delbem, A. Many-Objectives Optimization: A Machine Learning Approach for Reducing the Number of Objectives. Math. Comput. Appl. 2023, 28, 17. https://doi.org/10.3390/mca28010017 1300-686X 2297-8747 10.3390/mca28010017 https://www.mdpi.com/2297-8747/28/1/17 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132530903875584 |