Bounding the gap between a free group (outer) automorphism and its inverse
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/10216/110895 |
Resumo: | For any finitely generated group G, two complexity functions alpha(G) and beta(G) are defined to measure the maximal possible gap between the norm of an automorphism (respectively, outer automorphism) of G and the norm of its inverse. Restricting attention to free groups F-r, the exact asymptotic behaviour of alpha(2) and beta(2) is computed. For rank r >= 3, polynomial lower bounds are provided for alpha(r) and beta(r), and the existence of a polynomial upper bound is proved for beta(r). |
id |
RCAP_5e50fb6de978f9dd62e8398f848ff235 |
---|---|
oai_identifier_str |
oai:repositorio-aberto.up.pt:10216/110895 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Bounding the gap between a free group (outer) automorphism and its inverseFor any finitely generated group G, two complexity functions alpha(G) and beta(G) are defined to measure the maximal possible gap between the norm of an automorphism (respectively, outer automorphism) of G and the norm of its inverse. Restricting attention to free groups F-r, the exact asymptotic behaviour of alpha(2) and beta(2) is computed. For rank r >= 3, polynomial lower bounds are provided for alpha(r) and beta(r), and the existence of a polynomial upper bound is proved for beta(r).20162016-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/10216/110895eng0010-075710.1007/s13348-015-0133-3Pedro V. SilvaManuel LadraEnric Venturainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T15:08:18Zoai:repositorio-aberto.up.pt:10216/110895Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:16:31.298299Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Bounding the gap between a free group (outer) automorphism and its inverse |
title |
Bounding the gap between a free group (outer) automorphism and its inverse |
spellingShingle |
Bounding the gap between a free group (outer) automorphism and its inverse Pedro V. Silva |
title_short |
Bounding the gap between a free group (outer) automorphism and its inverse |
title_full |
Bounding the gap between a free group (outer) automorphism and its inverse |
title_fullStr |
Bounding the gap between a free group (outer) automorphism and its inverse |
title_full_unstemmed |
Bounding the gap between a free group (outer) automorphism and its inverse |
title_sort |
Bounding the gap between a free group (outer) automorphism and its inverse |
author |
Pedro V. Silva |
author_facet |
Pedro V. Silva Manuel Ladra Enric Ventura |
author_role |
author |
author2 |
Manuel Ladra Enric Ventura |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Pedro V. Silva Manuel Ladra Enric Ventura |
description |
For any finitely generated group G, two complexity functions alpha(G) and beta(G) are defined to measure the maximal possible gap between the norm of an automorphism (respectively, outer automorphism) of G and the norm of its inverse. Restricting attention to free groups F-r, the exact asymptotic behaviour of alpha(2) and beta(2) is computed. For rank r >= 3, polynomial lower bounds are provided for alpha(r) and beta(r), and the existence of a polynomial upper bound is proved for beta(r). |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016 2016-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10216/110895 |
url |
https://hdl.handle.net/10216/110895 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0010-0757 10.1007/s13348-015-0133-3 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136085158133761 |