Genetic programming for stacked generalization
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/119932 |
Resumo: | Bakurov, I., Castelli, M., Gau, O., Fontanella, F., & Vanneschi, L. (2021). Genetic programming for stacked generalization. Swarm and Evolutionary Computation, 65, 1-14. [100913]. https://doi.org/10.1016/j.swevo.2021.100913 |
id |
RCAP_5eb09975902feceb85172df7d75ca892 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/119932 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Genetic programming for stacked generalizationEnsemble LearningGenetic ProgrammingStacked GeneralizationStackingComputer Science(all)Mathematics(all)Bakurov, I., Castelli, M., Gau, O., Fontanella, F., & Vanneschi, L. (2021). Genetic programming for stacked generalization. Swarm and Evolutionary Computation, 65, 1-14. [100913]. https://doi.org/10.1016/j.swevo.2021.100913In machine learning, ensemble techniques are widely used to improve the performance of both classification and regression systems. They combine the models generated by different learning algorithms, typically trained on different data subsets or with different parameters, to obtain more accurate models. Ensemble strategies range from simple voting rules to more complex and effective stacked approaches. They are based on adopting a meta-learner, i.e. a further learning algorithm, and are trained on the predictions provided by the single algorithms making up the ensemble. The paper aims at exploiting some of the most recent genetic programming advances in the context of stacked generalization. In particular, we investigate how the evolutionary demes despeciation initialization technique, ϵ-lexicase selection, geometric-semantic operators, and semantic stopping criterion, can be effectively used to improve GP-based systems’ performance for stacked generalization (a.k.a. stacking). The experiments, performed on a broad set of synthetic and real-world regression problems, confirm the effectiveness of the proposed approach.NOVA Information Management School (NOVA IMS)Information Management Research Center (MagIC) - NOVA Information Management SchoolRUNBakurov, IllyaCastelli, MauroGau, OlivierFontanella, FrancescoVanneschi, Leonardo2024-01-24T01:31:45Z2021-082021-08-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article14application/pdfhttp://hdl.handle.net/10362/119932eng2210-6502PURE: 32162340https://doi.org/10.1016/j.swevo.2021.100913info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-22T17:54:09Zoai:run.unl.pt:10362/119932Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-22T17:54:09Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Genetic programming for stacked generalization |
title |
Genetic programming for stacked generalization |
spellingShingle |
Genetic programming for stacked generalization Bakurov, Illya Ensemble Learning Genetic Programming Stacked Generalization Stacking Computer Science(all) Mathematics(all) |
title_short |
Genetic programming for stacked generalization |
title_full |
Genetic programming for stacked generalization |
title_fullStr |
Genetic programming for stacked generalization |
title_full_unstemmed |
Genetic programming for stacked generalization |
title_sort |
Genetic programming for stacked generalization |
author |
Bakurov, Illya |
author_facet |
Bakurov, Illya Castelli, Mauro Gau, Olivier Fontanella, Francesco Vanneschi, Leonardo |
author_role |
author |
author2 |
Castelli, Mauro Gau, Olivier Fontanella, Francesco Vanneschi, Leonardo |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
NOVA Information Management School (NOVA IMS) Information Management Research Center (MagIC) - NOVA Information Management School RUN |
dc.contributor.author.fl_str_mv |
Bakurov, Illya Castelli, Mauro Gau, Olivier Fontanella, Francesco Vanneschi, Leonardo |
dc.subject.por.fl_str_mv |
Ensemble Learning Genetic Programming Stacked Generalization Stacking Computer Science(all) Mathematics(all) |
topic |
Ensemble Learning Genetic Programming Stacked Generalization Stacking Computer Science(all) Mathematics(all) |
description |
Bakurov, I., Castelli, M., Gau, O., Fontanella, F., & Vanneschi, L. (2021). Genetic programming for stacked generalization. Swarm and Evolutionary Computation, 65, 1-14. [100913]. https://doi.org/10.1016/j.swevo.2021.100913 |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-08 2021-08-01T00:00:00Z 2024-01-24T01:31:45Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/119932 |
url |
http://hdl.handle.net/10362/119932 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2210-6502 PURE: 32162340 https://doi.org/10.1016/j.swevo.2021.100913 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
14 application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817545807135506432 |