Evaluation of Stochastic Geographical Matters

Detalhes bibliográficos
Autor(a) principal: Negreiros, João
Data de Publicação: 2011
Outros Autores: Costa, Ana Cristina, Painho, Marco
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/64858
Resumo: Negreiros, J., Costa, A. C., & Painho, M. (2011). Evaluation of Stochastic Geographical Matters: Morphologic Geostatistics, Conditional Sequential Simulation and Geographical Weighted Regression. Trends in Applied Science Research, 6(3), 237-255. https://doi.org/10.3923/tasr.2011.237.255
id RCAP_5f088a838bd8b2ba6450073d5a455558
oai_identifier_str oai:run.unl.pt:10362/64858
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Evaluation of Stochastic Geographical MattersMorphologic Geostatistics, Conditional Sequential Simulation and Geographical Weighted RegressionNegreiros, J., Costa, A. C., & Painho, M. (2011). Evaluation of Stochastic Geographical Matters: Morphologic Geostatistics, Conditional Sequential Simulation and Geographical Weighted Regression. Trends in Applied Science Research, 6(3), 237-255. https://doi.org/10.3923/tasr.2011.237.255The aim of this study is to highlight four main stochastic modeling procedures for spatial data within Geographical Information Systems (GIS) which are still unknown by most GIS users: Morphologic Geostatistics (MG), Geographical Weighted Regression (GWR), Conditional Sequential Simulation (CSS) for continuous and categorical variables. Sequential simulation, for instance, is a widely used geostatistical tool for obtaining a set of equiprobable simulated realizations of variables from natural phenomena, conditional to observed data, honoring their spatial distribution and uncertainty. While Gaussian simulation involves the generation of many independent realizations of a Gaussian random field but requiring the transformation of original variables, direct sequential simulation (DSS) has been proposed for simulating directly in the original data space and does not rely on multi-Gaussian assumptions. A generic Pb contamination dataset is used to illustrate the MG and CSS procedures. Major relationships among Kriging estimation, spatial autocorrelation, geographical regression and the missing data issue are also reviewed in the last section.NOVA Information Management School (NOVA IMS)RUNNegreiros, JoãoCosta, Ana CristinaPainho, Marco2019-03-28T23:16:36Z2011-01-012011-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10362/64858engPURE: 204459https://doi.org/10.3923/tasr.2011.237.255info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:30:50Zoai:run.unl.pt:10362/64858Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:34:13.037108Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Evaluation of Stochastic Geographical Matters
Morphologic Geostatistics, Conditional Sequential Simulation and Geographical Weighted Regression
title Evaluation of Stochastic Geographical Matters
spellingShingle Evaluation of Stochastic Geographical Matters
Negreiros, João
title_short Evaluation of Stochastic Geographical Matters
title_full Evaluation of Stochastic Geographical Matters
title_fullStr Evaluation of Stochastic Geographical Matters
title_full_unstemmed Evaluation of Stochastic Geographical Matters
title_sort Evaluation of Stochastic Geographical Matters
author Negreiros, João
author_facet Negreiros, João
Costa, Ana Cristina
Painho, Marco
author_role author
author2 Costa, Ana Cristina
Painho, Marco
author2_role author
author
dc.contributor.none.fl_str_mv NOVA Information Management School (NOVA IMS)
RUN
dc.contributor.author.fl_str_mv Negreiros, João
Costa, Ana Cristina
Painho, Marco
description Negreiros, J., Costa, A. C., & Painho, M. (2011). Evaluation of Stochastic Geographical Matters: Morphologic Geostatistics, Conditional Sequential Simulation and Geographical Weighted Regression. Trends in Applied Science Research, 6(3), 237-255. https://doi.org/10.3923/tasr.2011.237.255
publishDate 2011
dc.date.none.fl_str_mv 2011-01-01
2011-01-01T00:00:00Z
2019-03-28T23:16:36Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/64858
url http://hdl.handle.net/10362/64858
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv PURE: 204459
https://doi.org/10.3923/tasr.2011.237.255
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137963658969088