On Finitary Functors

Detalhes bibliográficos
Autor(a) principal: Adámek, Jiří
Data de Publicação: 2019
Outros Autores: Milius, Stefan, Sousa, Lurdes, Wissmann, Thorsten
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/89488
Resumo: A simple criterion for a functor to be finitary is presented: we call F finitely bounded if for all objects X every finitely generated subobject of FX factorizes through the F-image of a finitely generated subobject of X. This is equivalent to F being finitary for all functors between `reasonable' locally finitely presentable categories, provided that F preserves monomorphisms. We also discuss the question when that last assumption can be dropped. The answer is affirmative for functors between categories such as Set, K-Vec (vector spaces), boolean algebras, and actions of any finite group either on Set or on K-Vec for fields K of characteristic 0. All this generalizes to locally $\lambda$-presentable categories, $\lambda$-accessible functors and $\lambda$-presentable algebras. As an application we obtain an easy proof that the Hausdorff functor on the category of complete metric spaces is $\aleph_1$-accessible.
id RCAP_5f3cf01175d3fb506dc1d310149142c6
oai_identifier_str oai:estudogeral.uc.pt:10316/89488
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling On Finitary FunctorsFinitely presentable object, finitely generatd object, (strictly) locally finitely presentable category, finitary functor, finitely bounded functorA simple criterion for a functor to be finitary is presented: we call F finitely bounded if for all objects X every finitely generated subobject of FX factorizes through the F-image of a finitely generated subobject of X. This is equivalent to F being finitary for all functors between `reasonable' locally finitely presentable categories, provided that F preserves monomorphisms. We also discuss the question when that last assumption can be dropped. The answer is affirmative for functors between categories such as Set, K-Vec (vector spaces), boolean algebras, and actions of any finite group either on Set or on K-Vec for fields K of characteristic 0. All this generalizes to locally $\lambda$-presentable categories, $\lambda$-accessible functors and $\lambda$-presentable algebras. As an application we obtain an easy proof that the Hausdorff functor on the category of complete metric spaces is $\aleph_1$-accessible.Theory and Applications of Categories2019info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/89488http://hdl.handle.net/10316/89488enghttp://www.tac.mta.ca/tac/volumes/34/35/34-35.pdfAdámek, JiříMilius, StefanSousa, LurdesWissmann, Thorsteninfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-05-25T06:20:12Zoai:estudogeral.uc.pt:10316/89488Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:09:47.080936Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv On Finitary Functors
title On Finitary Functors
spellingShingle On Finitary Functors
Adámek, Jiří
Finitely presentable object, finitely generatd object, (strictly) locally finitely presentable category, finitary functor, finitely bounded functor
title_short On Finitary Functors
title_full On Finitary Functors
title_fullStr On Finitary Functors
title_full_unstemmed On Finitary Functors
title_sort On Finitary Functors
author Adámek, Jiří
author_facet Adámek, Jiří
Milius, Stefan
Sousa, Lurdes
Wissmann, Thorsten
author_role author
author2 Milius, Stefan
Sousa, Lurdes
Wissmann, Thorsten
author2_role author
author
author
dc.contributor.author.fl_str_mv Adámek, Jiří
Milius, Stefan
Sousa, Lurdes
Wissmann, Thorsten
dc.subject.por.fl_str_mv Finitely presentable object, finitely generatd object, (strictly) locally finitely presentable category, finitary functor, finitely bounded functor
topic Finitely presentable object, finitely generatd object, (strictly) locally finitely presentable category, finitary functor, finitely bounded functor
description A simple criterion for a functor to be finitary is presented: we call F finitely bounded if for all objects X every finitely generated subobject of FX factorizes through the F-image of a finitely generated subobject of X. This is equivalent to F being finitary for all functors between `reasonable' locally finitely presentable categories, provided that F preserves monomorphisms. We also discuss the question when that last assumption can be dropped. The answer is affirmative for functors between categories such as Set, K-Vec (vector spaces), boolean algebras, and actions of any finite group either on Set or on K-Vec for fields K of characteristic 0. All this generalizes to locally $\lambda$-presentable categories, $\lambda$-accessible functors and $\lambda$-presentable algebras. As an application we obtain an easy proof that the Hausdorff functor on the category of complete metric spaces is $\aleph_1$-accessible.
publishDate 2019
dc.date.none.fl_str_mv 2019
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/89488
http://hdl.handle.net/10316/89488
url http://hdl.handle.net/10316/89488
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv http://www.tac.mta.ca/tac/volumes/34/35/34-35.pdf
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Theory and Applications of Categories
publisher.none.fl_str_mv Theory and Applications of Categories
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133992918712320