On Finitary Functors
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/89488 |
Resumo: | A simple criterion for a functor to be finitary is presented: we call F finitely bounded if for all objects X every finitely generated subobject of FX factorizes through the F-image of a finitely generated subobject of X. This is equivalent to F being finitary for all functors between `reasonable' locally finitely presentable categories, provided that F preserves monomorphisms. We also discuss the question when that last assumption can be dropped. The answer is affirmative for functors between categories such as Set, K-Vec (vector spaces), boolean algebras, and actions of any finite group either on Set or on K-Vec for fields K of characteristic 0. All this generalizes to locally $\lambda$-presentable categories, $\lambda$-accessible functors and $\lambda$-presentable algebras. As an application we obtain an easy proof that the Hausdorff functor on the category of complete metric spaces is $\aleph_1$-accessible. |
id |
RCAP_5f3cf01175d3fb506dc1d310149142c6 |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/89488 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
On Finitary FunctorsFinitely presentable object, finitely generatd object, (strictly) locally finitely presentable category, finitary functor, finitely bounded functorA simple criterion for a functor to be finitary is presented: we call F finitely bounded if for all objects X every finitely generated subobject of FX factorizes through the F-image of a finitely generated subobject of X. This is equivalent to F being finitary for all functors between `reasonable' locally finitely presentable categories, provided that F preserves monomorphisms. We also discuss the question when that last assumption can be dropped. The answer is affirmative for functors between categories such as Set, K-Vec (vector spaces), boolean algebras, and actions of any finite group either on Set or on K-Vec for fields K of characteristic 0. All this generalizes to locally $\lambda$-presentable categories, $\lambda$-accessible functors and $\lambda$-presentable algebras. As an application we obtain an easy proof that the Hausdorff functor on the category of complete metric spaces is $\aleph_1$-accessible.Theory and Applications of Categories2019info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/89488http://hdl.handle.net/10316/89488enghttp://www.tac.mta.ca/tac/volumes/34/35/34-35.pdfAdámek, JiříMilius, StefanSousa, LurdesWissmann, Thorsteninfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-05-25T06:20:12Zoai:estudogeral.uc.pt:10316/89488Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:09:47.080936Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
On Finitary Functors |
title |
On Finitary Functors |
spellingShingle |
On Finitary Functors Adámek, Jiří Finitely presentable object, finitely generatd object, (strictly) locally finitely presentable category, finitary functor, finitely bounded functor |
title_short |
On Finitary Functors |
title_full |
On Finitary Functors |
title_fullStr |
On Finitary Functors |
title_full_unstemmed |
On Finitary Functors |
title_sort |
On Finitary Functors |
author |
Adámek, Jiří |
author_facet |
Adámek, Jiří Milius, Stefan Sousa, Lurdes Wissmann, Thorsten |
author_role |
author |
author2 |
Milius, Stefan Sousa, Lurdes Wissmann, Thorsten |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Adámek, Jiří Milius, Stefan Sousa, Lurdes Wissmann, Thorsten |
dc.subject.por.fl_str_mv |
Finitely presentable object, finitely generatd object, (strictly) locally finitely presentable category, finitary functor, finitely bounded functor |
topic |
Finitely presentable object, finitely generatd object, (strictly) locally finitely presentable category, finitary functor, finitely bounded functor |
description |
A simple criterion for a functor to be finitary is presented: we call F finitely bounded if for all objects X every finitely generated subobject of FX factorizes through the F-image of a finitely generated subobject of X. This is equivalent to F being finitary for all functors between `reasonable' locally finitely presentable categories, provided that F preserves monomorphisms. We also discuss the question when that last assumption can be dropped. The answer is affirmative for functors between categories such as Set, K-Vec (vector spaces), boolean algebras, and actions of any finite group either on Set or on K-Vec for fields K of characteristic 0. All this generalizes to locally $\lambda$-presentable categories, $\lambda$-accessible functors and $\lambda$-presentable algebras. As an application we obtain an easy proof that the Hausdorff functor on the category of complete metric spaces is $\aleph_1$-accessible. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/89488 http://hdl.handle.net/10316/89488 |
url |
http://hdl.handle.net/10316/89488 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
http://www.tac.mta.ca/tac/volumes/34/35/34-35.pdf |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Theory and Applications of Categories |
publisher.none.fl_str_mv |
Theory and Applications of Categories |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133992918712320 |