Predicting hotel booking cancellations to decrease uncertainty and increase revenue

Detalhes bibliográficos
Autor(a) principal: Antonio,Nuno
Data de Publicação: 2017
Outros Autores: Almeida,Ana de, Nunes,Luis
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://scielo.pt/scielo.php?script=sci_arttext&pid=S2182-84582017000200003
Resumo: Booking cancellations have a substantial impact in demand-management decisions in the hospitality industry. Cancellations limit the production of accurate forecasts, a critical tool in terms of revenue management performance. To circumvent the problems caused by booking cancellations, hotels implement rigid cancellation policies and overbooking strategies, which can also have a negative influence on revenue and reputation. Using data sets from four resort hotels and addressing booking cancellation prediction as a classification problem in the scope of data science, authors demonstrate that it is possible to build models for predicting booking cancellations with accuracy results in excess of 90%. This demonstrates that despite what was assumed by Morales and Wang (2010) it is possible to predict with high accuracy whether a booking will be canceled. Results allow hotel managers to accurately predict net demand and build better forecasts, improve cancellation policies, define better overbooking tactics and thus use more assertive pricing and inventory allocation strategies
id RCAP_60333fa56c2c1c6df3c344fa8108ef3d
oai_identifier_str oai:scielo:S2182-84582017000200003
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Predicting hotel booking cancellations to decrease uncertainty and increase revenueData sciencehospitality industrymachine learningpredictive modelingrevenue managementBooking cancellations have a substantial impact in demand-management decisions in the hospitality industry. Cancellations limit the production of accurate forecasts, a critical tool in terms of revenue management performance. To circumvent the problems caused by booking cancellations, hotels implement rigid cancellation policies and overbooking strategies, which can also have a negative influence on revenue and reputation. Using data sets from four resort hotels and addressing booking cancellation prediction as a classification problem in the scope of data science, authors demonstrate that it is possible to build models for predicting booking cancellations with accuracy results in excess of 90%. This demonstrates that despite what was assumed by Morales and Wang (2010) it is possible to predict with high accuracy whether a booking will be canceled. Results allow hotel managers to accurately predict net demand and build better forecasts, improve cancellation policies, define better overbooking tactics and thus use more assertive pricing and inventory allocation strategiesEscola Superior de Gestão, Hotelaria e Turismo da Universidade do Algarve2017-06-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articletext/htmlhttp://scielo.pt/scielo.php?script=sci_arttext&pid=S2182-84582017000200003Tourism & Management Studies v.13 n.2 2017reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAPenghttp://scielo.pt/scielo.php?script=sci_arttext&pid=S2182-84582017000200003Antonio,NunoAlmeida,Ana deNunes,Luisinfo:eu-repo/semantics/openAccess2024-02-06T17:29:08Zoai:scielo:S2182-84582017000200003Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:33:12.136865Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Predicting hotel booking cancellations to decrease uncertainty and increase revenue
title Predicting hotel booking cancellations to decrease uncertainty and increase revenue
spellingShingle Predicting hotel booking cancellations to decrease uncertainty and increase revenue
Antonio,Nuno
Data science
hospitality industry
machine learning
predictive modeling
revenue management
title_short Predicting hotel booking cancellations to decrease uncertainty and increase revenue
title_full Predicting hotel booking cancellations to decrease uncertainty and increase revenue
title_fullStr Predicting hotel booking cancellations to decrease uncertainty and increase revenue
title_full_unstemmed Predicting hotel booking cancellations to decrease uncertainty and increase revenue
title_sort Predicting hotel booking cancellations to decrease uncertainty and increase revenue
author Antonio,Nuno
author_facet Antonio,Nuno
Almeida,Ana de
Nunes,Luis
author_role author
author2 Almeida,Ana de
Nunes,Luis
author2_role author
author
dc.contributor.author.fl_str_mv Antonio,Nuno
Almeida,Ana de
Nunes,Luis
dc.subject.por.fl_str_mv Data science
hospitality industry
machine learning
predictive modeling
revenue management
topic Data science
hospitality industry
machine learning
predictive modeling
revenue management
description Booking cancellations have a substantial impact in demand-management decisions in the hospitality industry. Cancellations limit the production of accurate forecasts, a critical tool in terms of revenue management performance. To circumvent the problems caused by booking cancellations, hotels implement rigid cancellation policies and overbooking strategies, which can also have a negative influence on revenue and reputation. Using data sets from four resort hotels and addressing booking cancellation prediction as a classification problem in the scope of data science, authors demonstrate that it is possible to build models for predicting booking cancellations with accuracy results in excess of 90%. This demonstrates that despite what was assumed by Morales and Wang (2010) it is possible to predict with high accuracy whether a booking will be canceled. Results allow hotel managers to accurately predict net demand and build better forecasts, improve cancellation policies, define better overbooking tactics and thus use more assertive pricing and inventory allocation strategies
publishDate 2017
dc.date.none.fl_str_mv 2017-06-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://scielo.pt/scielo.php?script=sci_arttext&pid=S2182-84582017000200003
url http://scielo.pt/scielo.php?script=sci_arttext&pid=S2182-84582017000200003
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv http://scielo.pt/scielo.php?script=sci_arttext&pid=S2182-84582017000200003
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Escola Superior de Gestão, Hotelaria e Turismo da Universidade do Algarve
publisher.none.fl_str_mv Escola Superior de Gestão, Hotelaria e Turismo da Universidade do Algarve
dc.source.none.fl_str_mv Tourism & Management Studies v.13 n.2 2017
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137391766667264