On Inverse subsemigroups of the semigroup of orientation preserving or orientation-reversing transformations
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10348/6740 |
Resumo: | It is well-known [16] that the semigroup Tn of all total transformations of a given n-element set Xn is covered by its inverse subsemigroups. This note provides a short and direct proof, based on properties of digraphs of transformations, that every inverse subsemigroup of order-preserving transformations on a finite chain Xn is a semilattice of idempotents, and so the semigroup of all order-preserving transformations of Xn is not covered by its inverse subsemigroups. This result is used to show that the semigroup of all orientation-preserving transformations and the semigroup of all orientation-preserving or orientation-reversing transformations of the chain Xn are covered by their inverse subsemigroups precisely when n less than or equal 3. |
id |
RCAP_6037dd34eac6cc710a4af90f702d27bf |
---|---|
oai_identifier_str |
oai:repositorio.utad.pt:10348/6740 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
On Inverse subsemigroups of the semigroup of orientation preserving or orientation-reversing transformationssemigroupsemilatticeinverse subsemigroupstrong inversetransformationorder-preserving transformationorientation-preserving transformationorientation-reversing transformationIt is well-known [16] that the semigroup Tn of all total transformations of a given n-element set Xn is covered by its inverse subsemigroups. This note provides a short and direct proof, based on properties of digraphs of transformations, that every inverse subsemigroup of order-preserving transformations on a finite chain Xn is a semilattice of idempotents, and so the semigroup of all order-preserving transformations of Xn is not covered by its inverse subsemigroups. This result is used to show that the semigroup of all orientation-preserving transformations and the semigroup of all orientation-preserving or orientation-reversing transformations of the chain Xn are covered by their inverse subsemigroups precisely when n less than or equal 3.V. Mazorchuk2016-11-07T14:06:26Z2015-01-01T00:00:00Z2015info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10348/6740eng1726-3255Catarino, PaulaHiggins, PeterLevi, Inessainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-02T12:33:19Zoai:repositorio.utad.pt:10348/6740Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:00:57.051171Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
On Inverse subsemigroups of the semigroup of orientation preserving or orientation-reversing transformations |
title |
On Inverse subsemigroups of the semigroup of orientation preserving or orientation-reversing transformations |
spellingShingle |
On Inverse subsemigroups of the semigroup of orientation preserving or orientation-reversing transformations Catarino, Paula semigroup semilattice inverse subsemigroup strong inverse transformation order-preserving transformation orientation-preserving transformation orientation-reversing transformation |
title_short |
On Inverse subsemigroups of the semigroup of orientation preserving or orientation-reversing transformations |
title_full |
On Inverse subsemigroups of the semigroup of orientation preserving or orientation-reversing transformations |
title_fullStr |
On Inverse subsemigroups of the semigroup of orientation preserving or orientation-reversing transformations |
title_full_unstemmed |
On Inverse subsemigroups of the semigroup of orientation preserving or orientation-reversing transformations |
title_sort |
On Inverse subsemigroups of the semigroup of orientation preserving or orientation-reversing transformations |
author |
Catarino, Paula |
author_facet |
Catarino, Paula Higgins, Peter Levi, Inessa |
author_role |
author |
author2 |
Higgins, Peter Levi, Inessa |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Catarino, Paula Higgins, Peter Levi, Inessa |
dc.subject.por.fl_str_mv |
semigroup semilattice inverse subsemigroup strong inverse transformation order-preserving transformation orientation-preserving transformation orientation-reversing transformation |
topic |
semigroup semilattice inverse subsemigroup strong inverse transformation order-preserving transformation orientation-preserving transformation orientation-reversing transformation |
description |
It is well-known [16] that the semigroup Tn of all total transformations of a given n-element set Xn is covered by its inverse subsemigroups. This note provides a short and direct proof, based on properties of digraphs of transformations, that every inverse subsemigroup of order-preserving transformations on a finite chain Xn is a semilattice of idempotents, and so the semigroup of all order-preserving transformations of Xn is not covered by its inverse subsemigroups. This result is used to show that the semigroup of all orientation-preserving transformations and the semigroup of all orientation-preserving or orientation-reversing transformations of the chain Xn are covered by their inverse subsemigroups precisely when n less than or equal 3. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-01-01T00:00:00Z 2015 2016-11-07T14:06:26Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10348/6740 |
url |
http://hdl.handle.net/10348/6740 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1726-3255 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
V. Mazorchuk |
publisher.none.fl_str_mv |
V. Mazorchuk |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137093207719936 |