Photonic implementation of physically unclonable functions

Detalhes bibliográficos
Autor(a) principal: Silvério, Tiago Filipe Santos
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/32114
Resumo: This dissertation aimed to study and develop optical Physically Unclonable Functions, which are physical devices characterized by having random intrinsic variations, thus being eligible towards high security systems due to their unclonability, uniqueness and randomness. With the rapid expansion of technologies such as Internet of Things and the concerns around counterfeited goods, secure and resilient cryptographic systems are in high demand. Moreover the development of digital ecosystems, mobile applications towards transactions now require fast and reliable algorithms to generate secure cryptographic keys. The statistical nature of speckle-based imaging creates an opportunity for these cryptographic key generators to arise. In the scope of this work, three different tokens were implemented as physically unclonable devices: tracing paper, plastic optical fiber and an organic-inorganic hybrid. These objects were subjected to a visible light laser stimulus and produced a speckle pattern which was then used to retrieve the cryptographic key associated to each of the materials. The methodology deployed in this work features the use of a Discrete Cosine Transform to enable a low-cost and semi-compact 128-bit key encryption channel. Furthermore, the authentication protocol required the analysis of multiple responses from different samples, establishing an optimal decision threshold level that maximized the robustness and minimized the fallibility of the system. The attained 128-bit encryption system performed, across all the samples, bellow the error probability detection limit of 10-12, showing its potential as a cryptographic key generator.
id RCAP_604a8ca0a7653cb8eb444129e2f22947
oai_identifier_str oai:ria.ua.pt:10773/32114
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Photonic implementation of physically unclonable functionsOptical physically unclonable functionsCryptographic systemsOptical coherent speckle patternInternet of thingsAnticounterfeitingOrganic-inorganic hybridsThis dissertation aimed to study and develop optical Physically Unclonable Functions, which are physical devices characterized by having random intrinsic variations, thus being eligible towards high security systems due to their unclonability, uniqueness and randomness. With the rapid expansion of technologies such as Internet of Things and the concerns around counterfeited goods, secure and resilient cryptographic systems are in high demand. Moreover the development of digital ecosystems, mobile applications towards transactions now require fast and reliable algorithms to generate secure cryptographic keys. The statistical nature of speckle-based imaging creates an opportunity for these cryptographic key generators to arise. In the scope of this work, three different tokens were implemented as physically unclonable devices: tracing paper, plastic optical fiber and an organic-inorganic hybrid. These objects were subjected to a visible light laser stimulus and produced a speckle pattern which was then used to retrieve the cryptographic key associated to each of the materials. The methodology deployed in this work features the use of a Discrete Cosine Transform to enable a low-cost and semi-compact 128-bit key encryption channel. Furthermore, the authentication protocol required the analysis of multiple responses from different samples, establishing an optimal decision threshold level that maximized the robustness and minimized the fallibility of the system. The attained 128-bit encryption system performed, across all the samples, bellow the error probability detection limit of 10-12, showing its potential as a cryptographic key generator.Nesta dissertação pretende-se estudar e desenvolver Funções Fisicamente Não Clonáveis, dispositivos caracterizados por terem variações aleatórias intrínsecas, sendo, portanto, elegíveis para sistemas de alta segurança devido à sua impossibilidade de clonagem, unicidade e aleatoriedade. Com a rápida expansão de tecnologias como a Internet das Coisas e as preocupações com produtos falsificados, os sistemas criptográficos seguros e resilientes são altamente requisitados. Além disso, o desenvolvimento de ecossistemas digitais e de aplicações móveis para transações comerciais requerem algoritmos rápidos e seguros de geração de chaves criptográficas. A natureza estatística das imagens baseadas no speckle cria uma oportunidade para o aparecimento desses geradores de chaves criptográficas. No contexto deste trabalho, três dispositivos diferentes foram implementados como funções fisicamente não clonáveis, nomeadamente, papel vegetal, fibra ótica de plástico e um híbrido orgânico-inorgânico. Estes objetos foram submetidos a um estímulo de luz coerente na região espectral visível e produziram um padrão de speckle o qual foi utilizado para recuperar a chave criptográfica associada a cada um dos materiais. A metodologia implementada neste trabalho incorpora a Transformada Discreta de Cosseno, o que possibilita a criação de um sistema criptográfico de 128 bits caracterizado por ser semi-compacto e de baixo custo. O protocolo de autenticação exigiu a análise de múltiplas respostas de diferentes Physically Unclonable Functions (PUFs), o que permitiu estabelecer um nível de limite de decisão ótimo de forma a maximizar a robustez e minimizar a probabilidade de erro por parte do sistema. O sistema de encriptação de 128 bits atingiu valores de probabilidade de erro abaixo do limite de deteção, 10-12, para todas as amostras, mostrando o seu potencial como gerador de chaves criptográficas.2021-09-14T14:50:16Z2021-07-22T00:00:00Z2021-07-22info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/32114engSilvério, Tiago Filipe Santosinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:02:09Zoai:ria.ua.pt:10773/32114Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:03:57.441507Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Photonic implementation of physically unclonable functions
title Photonic implementation of physically unclonable functions
spellingShingle Photonic implementation of physically unclonable functions
Silvério, Tiago Filipe Santos
Optical physically unclonable functions
Cryptographic systems
Optical coherent speckle pattern
Internet of things
Anticounterfeiting
Organic-inorganic hybrids
title_short Photonic implementation of physically unclonable functions
title_full Photonic implementation of physically unclonable functions
title_fullStr Photonic implementation of physically unclonable functions
title_full_unstemmed Photonic implementation of physically unclonable functions
title_sort Photonic implementation of physically unclonable functions
author Silvério, Tiago Filipe Santos
author_facet Silvério, Tiago Filipe Santos
author_role author
dc.contributor.author.fl_str_mv Silvério, Tiago Filipe Santos
dc.subject.por.fl_str_mv Optical physically unclonable functions
Cryptographic systems
Optical coherent speckle pattern
Internet of things
Anticounterfeiting
Organic-inorganic hybrids
topic Optical physically unclonable functions
Cryptographic systems
Optical coherent speckle pattern
Internet of things
Anticounterfeiting
Organic-inorganic hybrids
description This dissertation aimed to study and develop optical Physically Unclonable Functions, which are physical devices characterized by having random intrinsic variations, thus being eligible towards high security systems due to their unclonability, uniqueness and randomness. With the rapid expansion of technologies such as Internet of Things and the concerns around counterfeited goods, secure and resilient cryptographic systems are in high demand. Moreover the development of digital ecosystems, mobile applications towards transactions now require fast and reliable algorithms to generate secure cryptographic keys. The statistical nature of speckle-based imaging creates an opportunity for these cryptographic key generators to arise. In the scope of this work, three different tokens were implemented as physically unclonable devices: tracing paper, plastic optical fiber and an organic-inorganic hybrid. These objects were subjected to a visible light laser stimulus and produced a speckle pattern which was then used to retrieve the cryptographic key associated to each of the materials. The methodology deployed in this work features the use of a Discrete Cosine Transform to enable a low-cost and semi-compact 128-bit key encryption channel. Furthermore, the authentication protocol required the analysis of multiple responses from different samples, establishing an optimal decision threshold level that maximized the robustness and minimized the fallibility of the system. The attained 128-bit encryption system performed, across all the samples, bellow the error probability detection limit of 10-12, showing its potential as a cryptographic key generator.
publishDate 2021
dc.date.none.fl_str_mv 2021-09-14T14:50:16Z
2021-07-22T00:00:00Z
2021-07-22
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/32114
url http://hdl.handle.net/10773/32114
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137694937251840