Visual analytics for spatiotemporal events

Detalhes bibliográficos
Autor(a) principal: Silva, Ricardo Almeida
Data de Publicação: 2019
Outros Autores: Pires, Joao Moura, Datia, Nuno, Santos, Maribel Yasmina, Martins, Bruno, Birra, Fernando
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/1822/66796
Resumo: Crimes, forest fires, accidents, infectious diseases, or human interactions with mobile devices (e.g., tweets) are being logged as spatiotemporal events. For each event, its geographic location, time and related attributes are known with high levels of detail (LoDs). The LoD plays a crucial role when analyzing data, as it can highlight useful patterns or insights and enhance the user' perception of phenomena. For this reason, modeling phenomena at different LoDs is needed to increase the analytical value of the data, as there is no exclusive LOD at which the data can be analyzed. Current practices work mainly on a single LoD of the phenomena, driven by the analysts' perception, ignoring that identifying the suitable LoDs is a key issue for pointing relevant patterns. This article presents a Visual Analytics approach called VAST, that allows users to simultaneously inspect a phenomenon at different LoDs, helping them to see in what LoDs do interesting patterns emerge, or in what LoDs the perception of the phenomenon is different. In this way, the analysis of vast amounts of spatiotemporal events is assisted, guiding the user in this process. The use of several synthetic and real datasets supported the evaluation and validation of VAST, suggesting LoDs with different interesting spatiotemporal patterns and pointing the type of expected patterns.
id RCAP_61076ffcc77657f0865bbfb1c05e59e4
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/66796
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Visual analytics for spatiotemporal eventsData visualizationSpatiotemporal patternsMultiple levels of detailVisual analyticsCiências Naturais::Ciências da Computação e da InformaçãoScience & TechnologyCrimes, forest fires, accidents, infectious diseases, or human interactions with mobile devices (e.g., tweets) are being logged as spatiotemporal events. For each event, its geographic location, time and related attributes are known with high levels of detail (LoDs). The LoD plays a crucial role when analyzing data, as it can highlight useful patterns or insights and enhance the user' perception of phenomena. For this reason, modeling phenomena at different LoDs is needed to increase the analytical value of the data, as there is no exclusive LOD at which the data can be analyzed. Current practices work mainly on a single LoD of the phenomena, driven by the analysts' perception, ignoring that identifying the suitable LoDs is a key issue for pointing relevant patterns. This article presents a Visual Analytics approach called VAST, that allows users to simultaneously inspect a phenomenon at different LoDs, helping them to see in what LoDs do interesting patterns emerge, or in what LoDs the perception of the phenomenon is different. In this way, the analysis of vast amounts of spatiotemporal events is assisted, guiding the user in this process. The use of several synthetic and real datasets supported the evaluation and validation of VAST, suggesting LoDs with different interesting spatiotemporal patterns and pointing the type of expected patterns.This work has been supported by FCT - Fundacao para a Ciencia e Tecnologia MCTES, UID/CEC/04516/2013 (NOVA LINCS), UID/CEC/00319/2019 (ALGORITMI), and UID/CEC/50021/2019 (INESC-ID).SpringerUniversidade do MinhoSilva, Ricardo AlmeidaPires, Joao MouraDatia, NunoSantos, Maribel YasminaMartins, BrunoBirra, Fernando20192019-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/66796engSilva, R. A., Pires, J. M., Datia, N., Santos, M. Y., Martins, B., & Birra, F. (2019, August 16). Visual analytics for spatiotemporal events. Multimedia Tools and Applications. Springer Science and Business Media LLC. http://doi.org/10.1007/s11042-019-08012-21380-750110.1007/s11042-019-08012-2https://link.springer.com/article/10.1007%2Fs11042-019-08012-2info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:14:16Zoai:repositorium.sdum.uminho.pt:1822/66796Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:06:33.961661Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Visual analytics for spatiotemporal events
title Visual analytics for spatiotemporal events
spellingShingle Visual analytics for spatiotemporal events
Silva, Ricardo Almeida
Data visualization
Spatiotemporal patterns
Multiple levels of detail
Visual analytics
Ciências Naturais::Ciências da Computação e da Informação
Science & Technology
title_short Visual analytics for spatiotemporal events
title_full Visual analytics for spatiotemporal events
title_fullStr Visual analytics for spatiotemporal events
title_full_unstemmed Visual analytics for spatiotemporal events
title_sort Visual analytics for spatiotemporal events
author Silva, Ricardo Almeida
author_facet Silva, Ricardo Almeida
Pires, Joao Moura
Datia, Nuno
Santos, Maribel Yasmina
Martins, Bruno
Birra, Fernando
author_role author
author2 Pires, Joao Moura
Datia, Nuno
Santos, Maribel Yasmina
Martins, Bruno
Birra, Fernando
author2_role author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Silva, Ricardo Almeida
Pires, Joao Moura
Datia, Nuno
Santos, Maribel Yasmina
Martins, Bruno
Birra, Fernando
dc.subject.por.fl_str_mv Data visualization
Spatiotemporal patterns
Multiple levels of detail
Visual analytics
Ciências Naturais::Ciências da Computação e da Informação
Science & Technology
topic Data visualization
Spatiotemporal patterns
Multiple levels of detail
Visual analytics
Ciências Naturais::Ciências da Computação e da Informação
Science & Technology
description Crimes, forest fires, accidents, infectious diseases, or human interactions with mobile devices (e.g., tweets) are being logged as spatiotemporal events. For each event, its geographic location, time and related attributes are known with high levels of detail (LoDs). The LoD plays a crucial role when analyzing data, as it can highlight useful patterns or insights and enhance the user' perception of phenomena. For this reason, modeling phenomena at different LoDs is needed to increase the analytical value of the data, as there is no exclusive LOD at which the data can be analyzed. Current practices work mainly on a single LoD of the phenomena, driven by the analysts' perception, ignoring that identifying the suitable LoDs is a key issue for pointing relevant patterns. This article presents a Visual Analytics approach called VAST, that allows users to simultaneously inspect a phenomenon at different LoDs, helping them to see in what LoDs do interesting patterns emerge, or in what LoDs the perception of the phenomenon is different. In this way, the analysis of vast amounts of spatiotemporal events is assisted, guiding the user in this process. The use of several synthetic and real datasets supported the evaluation and validation of VAST, suggesting LoDs with different interesting spatiotemporal patterns and pointing the type of expected patterns.
publishDate 2019
dc.date.none.fl_str_mv 2019
2019-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1822/66796
url https://hdl.handle.net/1822/66796
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Silva, R. A., Pires, J. M., Datia, N., Santos, M. Y., Martins, B., & Birra, F. (2019, August 16). Visual analytics for spatiotemporal events. Multimedia Tools and Applications. Springer Science and Business Media LLC. http://doi.org/10.1007/s11042-019-08012-2
1380-7501
10.1007/s11042-019-08012-2
https://link.springer.com/article/10.1007%2Fs11042-019-08012-2
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132481574666240