Visual analytics for spatiotemporal events
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/1822/66796 |
Resumo: | Crimes, forest fires, accidents, infectious diseases, or human interactions with mobile devices (e.g., tweets) are being logged as spatiotemporal events. For each event, its geographic location, time and related attributes are known with high levels of detail (LoDs). The LoD plays a crucial role when analyzing data, as it can highlight useful patterns or insights and enhance the user' perception of phenomena. For this reason, modeling phenomena at different LoDs is needed to increase the analytical value of the data, as there is no exclusive LOD at which the data can be analyzed. Current practices work mainly on a single LoD of the phenomena, driven by the analysts' perception, ignoring that identifying the suitable LoDs is a key issue for pointing relevant patterns. This article presents a Visual Analytics approach called VAST, that allows users to simultaneously inspect a phenomenon at different LoDs, helping them to see in what LoDs do interesting patterns emerge, or in what LoDs the perception of the phenomenon is different. In this way, the analysis of vast amounts of spatiotemporal events is assisted, guiding the user in this process. The use of several synthetic and real datasets supported the evaluation and validation of VAST, suggesting LoDs with different interesting spatiotemporal patterns and pointing the type of expected patterns. |
id |
RCAP_61076ffcc77657f0865bbfb1c05e59e4 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/66796 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Visual analytics for spatiotemporal eventsData visualizationSpatiotemporal patternsMultiple levels of detailVisual analyticsCiências Naturais::Ciências da Computação e da InformaçãoScience & TechnologyCrimes, forest fires, accidents, infectious diseases, or human interactions with mobile devices (e.g., tweets) are being logged as spatiotemporal events. For each event, its geographic location, time and related attributes are known with high levels of detail (LoDs). The LoD plays a crucial role when analyzing data, as it can highlight useful patterns or insights and enhance the user' perception of phenomena. For this reason, modeling phenomena at different LoDs is needed to increase the analytical value of the data, as there is no exclusive LOD at which the data can be analyzed. Current practices work mainly on a single LoD of the phenomena, driven by the analysts' perception, ignoring that identifying the suitable LoDs is a key issue for pointing relevant patterns. This article presents a Visual Analytics approach called VAST, that allows users to simultaneously inspect a phenomenon at different LoDs, helping them to see in what LoDs do interesting patterns emerge, or in what LoDs the perception of the phenomenon is different. In this way, the analysis of vast amounts of spatiotemporal events is assisted, guiding the user in this process. The use of several synthetic and real datasets supported the evaluation and validation of VAST, suggesting LoDs with different interesting spatiotemporal patterns and pointing the type of expected patterns.This work has been supported by FCT - Fundacao para a Ciencia e Tecnologia MCTES, UID/CEC/04516/2013 (NOVA LINCS), UID/CEC/00319/2019 (ALGORITMI), and UID/CEC/50021/2019 (INESC-ID).SpringerUniversidade do MinhoSilva, Ricardo AlmeidaPires, Joao MouraDatia, NunoSantos, Maribel YasminaMartins, BrunoBirra, Fernando20192019-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/66796engSilva, R. A., Pires, J. M., Datia, N., Santos, M. Y., Martins, B., & Birra, F. (2019, August 16). Visual analytics for spatiotemporal events. Multimedia Tools and Applications. Springer Science and Business Media LLC. http://doi.org/10.1007/s11042-019-08012-21380-750110.1007/s11042-019-08012-2https://link.springer.com/article/10.1007%2Fs11042-019-08012-2info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:14:16Zoai:repositorium.sdum.uminho.pt:1822/66796Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:06:33.961661Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Visual analytics for spatiotemporal events |
title |
Visual analytics for spatiotemporal events |
spellingShingle |
Visual analytics for spatiotemporal events Silva, Ricardo Almeida Data visualization Spatiotemporal patterns Multiple levels of detail Visual analytics Ciências Naturais::Ciências da Computação e da Informação Science & Technology |
title_short |
Visual analytics for spatiotemporal events |
title_full |
Visual analytics for spatiotemporal events |
title_fullStr |
Visual analytics for spatiotemporal events |
title_full_unstemmed |
Visual analytics for spatiotemporal events |
title_sort |
Visual analytics for spatiotemporal events |
author |
Silva, Ricardo Almeida |
author_facet |
Silva, Ricardo Almeida Pires, Joao Moura Datia, Nuno Santos, Maribel Yasmina Martins, Bruno Birra, Fernando |
author_role |
author |
author2 |
Pires, Joao Moura Datia, Nuno Santos, Maribel Yasmina Martins, Bruno Birra, Fernando |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Silva, Ricardo Almeida Pires, Joao Moura Datia, Nuno Santos, Maribel Yasmina Martins, Bruno Birra, Fernando |
dc.subject.por.fl_str_mv |
Data visualization Spatiotemporal patterns Multiple levels of detail Visual analytics Ciências Naturais::Ciências da Computação e da Informação Science & Technology |
topic |
Data visualization Spatiotemporal patterns Multiple levels of detail Visual analytics Ciências Naturais::Ciências da Computação e da Informação Science & Technology |
description |
Crimes, forest fires, accidents, infectious diseases, or human interactions with mobile devices (e.g., tweets) are being logged as spatiotemporal events. For each event, its geographic location, time and related attributes are known with high levels of detail (LoDs). The LoD plays a crucial role when analyzing data, as it can highlight useful patterns or insights and enhance the user' perception of phenomena. For this reason, modeling phenomena at different LoDs is needed to increase the analytical value of the data, as there is no exclusive LOD at which the data can be analyzed. Current practices work mainly on a single LoD of the phenomena, driven by the analysts' perception, ignoring that identifying the suitable LoDs is a key issue for pointing relevant patterns. This article presents a Visual Analytics approach called VAST, that allows users to simultaneously inspect a phenomenon at different LoDs, helping them to see in what LoDs do interesting patterns emerge, or in what LoDs the perception of the phenomenon is different. In this way, the analysis of vast amounts of spatiotemporal events is assisted, guiding the user in this process. The use of several synthetic and real datasets supported the evaluation and validation of VAST, suggesting LoDs with different interesting spatiotemporal patterns and pointing the type of expected patterns. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019 2019-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1822/66796 |
url |
https://hdl.handle.net/1822/66796 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Silva, R. A., Pires, J. M., Datia, N., Santos, M. Y., Martins, B., & Birra, F. (2019, August 16). Visual analytics for spatiotemporal events. Multimedia Tools and Applications. Springer Science and Business Media LLC. http://doi.org/10.1007/s11042-019-08012-2 1380-7501 10.1007/s11042-019-08012-2 https://link.springer.com/article/10.1007%2Fs11042-019-08012-2 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132481574666240 |