A fuzzy clustering approach to a demand response model

Detalhes bibliográficos
Autor(a) principal: Pereira, R.
Data de Publicação: 2016
Outros Autores: Fagundes, A., Melicio, R., Mendes, V., Figueiredo, Joao, Martins, J., Quadrado, J.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10174/20340
https://doi.org/http://dx.doi.org/10.1016/j.ijepes.2016.02.032
Resumo: This paper proposes a novel demand response model using a fuzzy subtractive cluster approach. The model development provides support to domestic consumer decisions on controllable loads management, considering consumers’ consumption needs and the appropriate load shape or rescheduling in order to achieve possible economic benefits. The model based on fuzzy subtractive clustering method considers clusters of domestic consumption covering an adequate consumption range. Analysis of different scenarios is presented considering available electric power and electric energy prices. Simulation results are presented and conclusions of the proposed demand response model are discussed.
id RCAP_6110c28ce3a0c2223d5f8270f9bd82ad
oai_identifier_str oai:dspace.uevora.pt:10174/20340
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling A fuzzy clustering approach to a demand response modelDemand ResponseSmart GridFuzzy ClusteringLoad ManagementThis paper proposes a novel demand response model using a fuzzy subtractive cluster approach. The model development provides support to domestic consumer decisions on controllable loads management, considering consumers’ consumption needs and the appropriate load shape or rescheduling in order to achieve possible economic benefits. The model based on fuzzy subtractive clustering method considers clusters of domestic consumption covering an adequate consumption range. Analysis of different scenarios is presented considering available electric power and electric energy prices. Simulation results are presented and conclusions of the proposed demand response model are discussed.ELSEVIER2017-01-30T13:26:18Z2017-01-302016-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10174/20340https://doi.org/http://dx.doi.org/10.1016/j.ijepes.2016.02.032http://hdl.handle.net/10174/20340https://doi.org/http://dx.doi.org/10.1016/j.ijepes.2016.02.032eng11. Pereira, R., Fagundes, A., Melicio, R., Mendes, V., Figueiredo, J., Martins, J., Quadrado, J. [2016]. A fuzzy clustering approach to a demand response model, International Journal of Electrical Power and Energy Systems, 81(2016), pp. 184-192 - ELSEVIER.ndndndndjfig@uevora.ptndnd493Pereira, R.Fagundes, A.Melicio, R.Mendes, V.Figueiredo, JoaoMartins, J.Quadrado, J.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T19:09:50Zoai:dspace.uevora.pt:10174/20340Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:11:39.961734Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv A fuzzy clustering approach to a demand response model
title A fuzzy clustering approach to a demand response model
spellingShingle A fuzzy clustering approach to a demand response model
Pereira, R.
Demand Response
Smart Grid
Fuzzy Clustering
Load Management
title_short A fuzzy clustering approach to a demand response model
title_full A fuzzy clustering approach to a demand response model
title_fullStr A fuzzy clustering approach to a demand response model
title_full_unstemmed A fuzzy clustering approach to a demand response model
title_sort A fuzzy clustering approach to a demand response model
author Pereira, R.
author_facet Pereira, R.
Fagundes, A.
Melicio, R.
Mendes, V.
Figueiredo, Joao
Martins, J.
Quadrado, J.
author_role author
author2 Fagundes, A.
Melicio, R.
Mendes, V.
Figueiredo, Joao
Martins, J.
Quadrado, J.
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Pereira, R.
Fagundes, A.
Melicio, R.
Mendes, V.
Figueiredo, Joao
Martins, J.
Quadrado, J.
dc.subject.por.fl_str_mv Demand Response
Smart Grid
Fuzzy Clustering
Load Management
topic Demand Response
Smart Grid
Fuzzy Clustering
Load Management
description This paper proposes a novel demand response model using a fuzzy subtractive cluster approach. The model development provides support to domestic consumer decisions on controllable loads management, considering consumers’ consumption needs and the appropriate load shape or rescheduling in order to achieve possible economic benefits. The model based on fuzzy subtractive clustering method considers clusters of domestic consumption covering an adequate consumption range. Analysis of different scenarios is presented considering available electric power and electric energy prices. Simulation results are presented and conclusions of the proposed demand response model are discussed.
publishDate 2016
dc.date.none.fl_str_mv 2016-01-01T00:00:00Z
2017-01-30T13:26:18Z
2017-01-30
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10174/20340
https://doi.org/http://dx.doi.org/10.1016/j.ijepes.2016.02.032
http://hdl.handle.net/10174/20340
https://doi.org/http://dx.doi.org/10.1016/j.ijepes.2016.02.032
url http://hdl.handle.net/10174/20340
https://doi.org/http://dx.doi.org/10.1016/j.ijepes.2016.02.032
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 11. Pereira, R., Fagundes, A., Melicio, R., Mendes, V., Figueiredo, J., Martins, J., Quadrado, J. [2016]. A fuzzy clustering approach to a demand response model, International Journal of Electrical Power and Energy Systems, 81(2016), pp. 184-192 - ELSEVIER.
nd
nd
nd
nd
jfig@uevora.pt
nd
nd
493
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv ELSEVIER
publisher.none.fl_str_mv ELSEVIER
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136598681452544