A fuzzy clustering approach to a demand response model
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10174/20340 https://doi.org/http://dx.doi.org/10.1016/j.ijepes.2016.02.032 |
Resumo: | This paper proposes a novel demand response model using a fuzzy subtractive cluster approach. The model development provides support to domestic consumer decisions on controllable loads management, considering consumers’ consumption needs and the appropriate load shape or rescheduling in order to achieve possible economic benefits. The model based on fuzzy subtractive clustering method considers clusters of domestic consumption covering an adequate consumption range. Analysis of different scenarios is presented considering available electric power and electric energy prices. Simulation results are presented and conclusions of the proposed demand response model are discussed. |
id |
RCAP_6110c28ce3a0c2223d5f8270f9bd82ad |
---|---|
oai_identifier_str |
oai:dspace.uevora.pt:10174/20340 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A fuzzy clustering approach to a demand response modelDemand ResponseSmart GridFuzzy ClusteringLoad ManagementThis paper proposes a novel demand response model using a fuzzy subtractive cluster approach. The model development provides support to domestic consumer decisions on controllable loads management, considering consumers’ consumption needs and the appropriate load shape or rescheduling in order to achieve possible economic benefits. The model based on fuzzy subtractive clustering method considers clusters of domestic consumption covering an adequate consumption range. Analysis of different scenarios is presented considering available electric power and electric energy prices. Simulation results are presented and conclusions of the proposed demand response model are discussed.ELSEVIER2017-01-30T13:26:18Z2017-01-302016-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10174/20340https://doi.org/http://dx.doi.org/10.1016/j.ijepes.2016.02.032http://hdl.handle.net/10174/20340https://doi.org/http://dx.doi.org/10.1016/j.ijepes.2016.02.032eng11. Pereira, R., Fagundes, A., Melicio, R., Mendes, V., Figueiredo, J., Martins, J., Quadrado, J. [2016]. A fuzzy clustering approach to a demand response model, International Journal of Electrical Power and Energy Systems, 81(2016), pp. 184-192 - ELSEVIER.ndndndndjfig@uevora.ptndnd493Pereira, R.Fagundes, A.Melicio, R.Mendes, V.Figueiredo, JoaoMartins, J.Quadrado, J.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T19:09:50Zoai:dspace.uevora.pt:10174/20340Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:11:39.961734Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A fuzzy clustering approach to a demand response model |
title |
A fuzzy clustering approach to a demand response model |
spellingShingle |
A fuzzy clustering approach to a demand response model Pereira, R. Demand Response Smart Grid Fuzzy Clustering Load Management |
title_short |
A fuzzy clustering approach to a demand response model |
title_full |
A fuzzy clustering approach to a demand response model |
title_fullStr |
A fuzzy clustering approach to a demand response model |
title_full_unstemmed |
A fuzzy clustering approach to a demand response model |
title_sort |
A fuzzy clustering approach to a demand response model |
author |
Pereira, R. |
author_facet |
Pereira, R. Fagundes, A. Melicio, R. Mendes, V. Figueiredo, Joao Martins, J. Quadrado, J. |
author_role |
author |
author2 |
Fagundes, A. Melicio, R. Mendes, V. Figueiredo, Joao Martins, J. Quadrado, J. |
author2_role |
author author author author author author |
dc.contributor.author.fl_str_mv |
Pereira, R. Fagundes, A. Melicio, R. Mendes, V. Figueiredo, Joao Martins, J. Quadrado, J. |
dc.subject.por.fl_str_mv |
Demand Response Smart Grid Fuzzy Clustering Load Management |
topic |
Demand Response Smart Grid Fuzzy Clustering Load Management |
description |
This paper proposes a novel demand response model using a fuzzy subtractive cluster approach. The model development provides support to domestic consumer decisions on controllable loads management, considering consumers’ consumption needs and the appropriate load shape or rescheduling in order to achieve possible economic benefits. The model based on fuzzy subtractive clustering method considers clusters of domestic consumption covering an adequate consumption range. Analysis of different scenarios is presented considering available electric power and electric energy prices. Simulation results are presented and conclusions of the proposed demand response model are discussed. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-01-01T00:00:00Z 2017-01-30T13:26:18Z 2017-01-30 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10174/20340 https://doi.org/http://dx.doi.org/10.1016/j.ijepes.2016.02.032 http://hdl.handle.net/10174/20340 https://doi.org/http://dx.doi.org/10.1016/j.ijepes.2016.02.032 |
url |
http://hdl.handle.net/10174/20340 https://doi.org/http://dx.doi.org/10.1016/j.ijepes.2016.02.032 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
11. Pereira, R., Fagundes, A., Melicio, R., Mendes, V., Figueiredo, J., Martins, J., Quadrado, J. [2016]. A fuzzy clustering approach to a demand response model, International Journal of Electrical Power and Energy Systems, 81(2016), pp. 184-192 - ELSEVIER. nd nd nd nd jfig@uevora.pt nd nd 493 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
ELSEVIER |
publisher.none.fl_str_mv |
ELSEVIER |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136598681452544 |