Acceleration of electrons in the plasma wakefield of a proton bunch
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10071/18046 |
Resumo: | High-energy particle accelerators have been crucial in providing a deeper understanding of fundamental particles and the forces that govern their interactions. To increase the energy of the particles or to reduce the size of the accelerator, new acceleration schemes need to be developed. Plasma wakefield acceleration(1-5), in which the electrons in a plasma are excited, leading to strong electric fields (so called 'wakefields'), is one such promising acceleration technique. Experiments have shown that an intense laser pulse(6-9) or electron bunch(10,11) traversing a plasma can drive electric fields of tens of gigavolts per metre and above-well beyond those achieved in conventional radio-frequency accelerators (about 0.1 gigavolt per metre). However, the low stored energy of laser pulses and electron bunches means that multiple acceleration stages are needed to reach very high particle energies(5,12). The use of proton bunches is compelling because they have the potential to drive wakefields and to accelerate electrons to high energy in a single acceleration stage(13). Long, thin proton bunches can be used because they undergo a process called self-modulation(14-16), a particle-plasma interaction that splits the bunch longitudinally into a series of high-density microbunches, which then act resonantly to create large wakefields. The Advanced Wakefield (AWAKE) experiment at CERN17-19 uses high-intensity proton bunches-in which each proton has an energy of 400 gigaelectronvolts, resulting in a total bunch energy of 19 kilojoules-to drive a wakefield in a ten-metrelong plasma. Electron bunches are then injected into this wakefield. Here we present measurements of electrons accelerated up to two gigaelectronvolts at the AWAKE experiment, in a demonstration of proton-driven plasma wakefield acceleration. Measurements were conducted under various plasma conditions and the acceleration was found to be consistent and reliable. The potential for this scheme to produce very high-energy electron bunches in a single accelerating stage(20) means that our results are an important step towards the development of future high-energy particle accelerators(21-22). |
id |
RCAP_61121404afc6ba1629858696ac347b48 |
---|---|
oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/18046 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Acceleration of electrons in the plasma wakefield of a proton bunchHigh-energy particle accelerators have been crucial in providing a deeper understanding of fundamental particles and the forces that govern their interactions. To increase the energy of the particles or to reduce the size of the accelerator, new acceleration schemes need to be developed. Plasma wakefield acceleration(1-5), in which the electrons in a plasma are excited, leading to strong electric fields (so called 'wakefields'), is one such promising acceleration technique. Experiments have shown that an intense laser pulse(6-9) or electron bunch(10,11) traversing a plasma can drive electric fields of tens of gigavolts per metre and above-well beyond those achieved in conventional radio-frequency accelerators (about 0.1 gigavolt per metre). However, the low stored energy of laser pulses and electron bunches means that multiple acceleration stages are needed to reach very high particle energies(5,12). The use of proton bunches is compelling because they have the potential to drive wakefields and to accelerate electrons to high energy in a single acceleration stage(13). Long, thin proton bunches can be used because they undergo a process called self-modulation(14-16), a particle-plasma interaction that splits the bunch longitudinally into a series of high-density microbunches, which then act resonantly to create large wakefields. The Advanced Wakefield (AWAKE) experiment at CERN17-19 uses high-intensity proton bunches-in which each proton has an energy of 400 gigaelectronvolts, resulting in a total bunch energy of 19 kilojoules-to drive a wakefield in a ten-metrelong plasma. Electron bunches are then injected into this wakefield. Here we present measurements of electrons accelerated up to two gigaelectronvolts at the AWAKE experiment, in a demonstration of proton-driven plasma wakefield acceleration. Measurements were conducted under various plasma conditions and the acceleration was found to be consistent and reliable. The potential for this scheme to produce very high-energy electron bunches in a single accelerating stage(20) means that our results are an important step towards the development of future high-energy particle accelerators(21-22).Nature Publishing Group2019-05-09T14:48:57Z2018-01-01T00:00:00Z20182018-12-13T11:18:43Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10071/18046eng0028-083610.1038/s41586-018-0485-4Adli, E.Ahuja, A.Apsimon, O.Apsimon, R.Bachmann, A.-M.Barrientos, D.Batsch, F.Bauche, J.Berglyd Olsen, V. K.Bernardini, M.Bohl, T.Bracco, C.Braunmuller, F.Burt, G.Buttenschön, B.Caldwell, A.Cascella, M.Chappell, J.Chevallay, E.Chung, M.Cooke, D.Damerau, H.Deacon, L.Deubner, L. H.Dexter, A.Doebert, S.Farmer, J.Fedosseev, V. N.Fiorito, R.Fonseca, R. A.Friebel, F.Garolfi, L.Gessner, S.Gorgisyan, I.Gorn, A. A.Granados, E.Grulke, O.Gschwendtner, E.Hansen, J.Helm, A.Henderson, J. R.Hüther, M.Ibison, M.Jensen, L.Jolly, S.Keeble, F.Kim, S.-Y.Kraus, F.Li, Y.Liu, S.Lopes, N.Lotov, K. V.Maricalva Brun, L.Martyanov, M.Mazzoni, S.Medina Godoy, D.Minakov, V. A.Mitchell, J.Molendijk, J. C.Moody, J. T.Moreira, M.Muggli, P.Öz, E.Pasquino, C.Pardons, A.Peña Asmus, F.Pepitone, K.Perera, A.Petrenko, A.Pitmann, S.Pukhov, A.Rey, S.Rieger, K.Ruhl, H.Schmidt, J.Shalimova, A. I.Sherwood, P.Silva, L. O.Soby, L.Sosedkin, A. P.Speroni, R.Spitsyn, R. I.Tuev, P. V.Turner, M.Velotti, F.Verra, L.Verzilov, V. A.Vieira, J.Welsch, C. P.Williamson, B.Wing, M.Woolley, B.Xia, G.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-07-07T03:43:25Zoai:repositorio.iscte-iul.pt:10071/18046Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-07-07T03:43:25Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Acceleration of electrons in the plasma wakefield of a proton bunch |
title |
Acceleration of electrons in the plasma wakefield of a proton bunch |
spellingShingle |
Acceleration of electrons in the plasma wakefield of a proton bunch Adli, E. |
title_short |
Acceleration of electrons in the plasma wakefield of a proton bunch |
title_full |
Acceleration of electrons in the plasma wakefield of a proton bunch |
title_fullStr |
Acceleration of electrons in the plasma wakefield of a proton bunch |
title_full_unstemmed |
Acceleration of electrons in the plasma wakefield of a proton bunch |
title_sort |
Acceleration of electrons in the plasma wakefield of a proton bunch |
author |
Adli, E. |
author_facet |
Adli, E. Ahuja, A. Apsimon, O. Apsimon, R. Bachmann, A.-M. Barrientos, D. Batsch, F. Bauche, J. Berglyd Olsen, V. K. Bernardini, M. Bohl, T. Bracco, C. Braunmuller, F. Burt, G. Buttenschön, B. Caldwell, A. Cascella, M. Chappell, J. Chevallay, E. Chung, M. Cooke, D. Damerau, H. Deacon, L. Deubner, L. H. Dexter, A. Doebert, S. Farmer, J. Fedosseev, V. N. Fiorito, R. Fonseca, R. A. Friebel, F. Garolfi, L. Gessner, S. Gorgisyan, I. Gorn, A. A. Granados, E. Grulke, O. Gschwendtner, E. Hansen, J. Helm, A. Henderson, J. R. Hüther, M. Ibison, M. Jensen, L. Jolly, S. Keeble, F. Kim, S.-Y. Kraus, F. Li, Y. Liu, S. Lopes, N. Lotov, K. V. Maricalva Brun, L. Martyanov, M. Mazzoni, S. Medina Godoy, D. Minakov, V. A. Mitchell, J. Molendijk, J. C. Moody, J. T. Moreira, M. Muggli, P. Öz, E. Pasquino, C. Pardons, A. Peña Asmus, F. Pepitone, K. Perera, A. Petrenko, A. Pitmann, S. Pukhov, A. Rey, S. Rieger, K. Ruhl, H. Schmidt, J. Shalimova, A. I. Sherwood, P. Silva, L. O. Soby, L. Sosedkin, A. P. Speroni, R. Spitsyn, R. I. Tuev, P. V. Turner, M. Velotti, F. Verra, L. Verzilov, V. A. Vieira, J. Welsch, C. P. Williamson, B. Wing, M. Woolley, B. Xia, G. |
author_role |
author |
author2 |
Ahuja, A. Apsimon, O. Apsimon, R. Bachmann, A.-M. Barrientos, D. Batsch, F. Bauche, J. Berglyd Olsen, V. K. Bernardini, M. Bohl, T. Bracco, C. Braunmuller, F. Burt, G. Buttenschön, B. Caldwell, A. Cascella, M. Chappell, J. Chevallay, E. Chung, M. Cooke, D. Damerau, H. Deacon, L. Deubner, L. H. Dexter, A. Doebert, S. Farmer, J. Fedosseev, V. N. Fiorito, R. Fonseca, R. A. Friebel, F. Garolfi, L. Gessner, S. Gorgisyan, I. Gorn, A. A. Granados, E. Grulke, O. Gschwendtner, E. Hansen, J. Helm, A. Henderson, J. R. Hüther, M. Ibison, M. Jensen, L. Jolly, S. Keeble, F. Kim, S.-Y. Kraus, F. Li, Y. Liu, S. Lopes, N. Lotov, K. V. Maricalva Brun, L. Martyanov, M. Mazzoni, S. Medina Godoy, D. Minakov, V. A. Mitchell, J. Molendijk, J. C. Moody, J. T. Moreira, M. Muggli, P. Öz, E. Pasquino, C. Pardons, A. Peña Asmus, F. Pepitone, K. Perera, A. Petrenko, A. Pitmann, S. Pukhov, A. Rey, S. Rieger, K. Ruhl, H. Schmidt, J. Shalimova, A. I. Sherwood, P. Silva, L. O. Soby, L. Sosedkin, A. P. Speroni, R. Spitsyn, R. I. Tuev, P. V. Turner, M. Velotti, F. Verra, L. Verzilov, V. A. Vieira, J. Welsch, C. P. Williamson, B. Wing, M. Woolley, B. Xia, G. |
author2_role |
author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author |
dc.contributor.author.fl_str_mv |
Adli, E. Ahuja, A. Apsimon, O. Apsimon, R. Bachmann, A.-M. Barrientos, D. Batsch, F. Bauche, J. Berglyd Olsen, V. K. Bernardini, M. Bohl, T. Bracco, C. Braunmuller, F. Burt, G. Buttenschön, B. Caldwell, A. Cascella, M. Chappell, J. Chevallay, E. Chung, M. Cooke, D. Damerau, H. Deacon, L. Deubner, L. H. Dexter, A. Doebert, S. Farmer, J. Fedosseev, V. N. Fiorito, R. Fonseca, R. A. Friebel, F. Garolfi, L. Gessner, S. Gorgisyan, I. Gorn, A. A. Granados, E. Grulke, O. Gschwendtner, E. Hansen, J. Helm, A. Henderson, J. R. Hüther, M. Ibison, M. Jensen, L. Jolly, S. Keeble, F. Kim, S.-Y. Kraus, F. Li, Y. Liu, S. Lopes, N. Lotov, K. V. Maricalva Brun, L. Martyanov, M. Mazzoni, S. Medina Godoy, D. Minakov, V. A. Mitchell, J. Molendijk, J. C. Moody, J. T. Moreira, M. Muggli, P. Öz, E. Pasquino, C. Pardons, A. Peña Asmus, F. Pepitone, K. Perera, A. Petrenko, A. Pitmann, S. Pukhov, A. Rey, S. Rieger, K. Ruhl, H. Schmidt, J. Shalimova, A. I. Sherwood, P. Silva, L. O. Soby, L. Sosedkin, A. P. Speroni, R. Spitsyn, R. I. Tuev, P. V. Turner, M. Velotti, F. Verra, L. Verzilov, V. A. Vieira, J. Welsch, C. P. Williamson, B. Wing, M. Woolley, B. Xia, G. |
description |
High-energy particle accelerators have been crucial in providing a deeper understanding of fundamental particles and the forces that govern their interactions. To increase the energy of the particles or to reduce the size of the accelerator, new acceleration schemes need to be developed. Plasma wakefield acceleration(1-5), in which the electrons in a plasma are excited, leading to strong electric fields (so called 'wakefields'), is one such promising acceleration technique. Experiments have shown that an intense laser pulse(6-9) or electron bunch(10,11) traversing a plasma can drive electric fields of tens of gigavolts per metre and above-well beyond those achieved in conventional radio-frequency accelerators (about 0.1 gigavolt per metre). However, the low stored energy of laser pulses and electron bunches means that multiple acceleration stages are needed to reach very high particle energies(5,12). The use of proton bunches is compelling because they have the potential to drive wakefields and to accelerate electrons to high energy in a single acceleration stage(13). Long, thin proton bunches can be used because they undergo a process called self-modulation(14-16), a particle-plasma interaction that splits the bunch longitudinally into a series of high-density microbunches, which then act resonantly to create large wakefields. The Advanced Wakefield (AWAKE) experiment at CERN17-19 uses high-intensity proton bunches-in which each proton has an energy of 400 gigaelectronvolts, resulting in a total bunch energy of 19 kilojoules-to drive a wakefield in a ten-metrelong plasma. Electron bunches are then injected into this wakefield. Here we present measurements of electrons accelerated up to two gigaelectronvolts at the AWAKE experiment, in a demonstration of proton-driven plasma wakefield acceleration. Measurements were conducted under various plasma conditions and the acceleration was found to be consistent and reliable. The potential for this scheme to produce very high-energy electron bunches in a single accelerating stage(20) means that our results are an important step towards the development of future high-energy particle accelerators(21-22). |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-01-01T00:00:00Z 2018 2018-12-13T11:18:43Z 2019-05-09T14:48:57Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10071/18046 |
url |
http://hdl.handle.net/10071/18046 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0028-0836 10.1038/s41586-018-0485-4 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Nature Publishing Group |
publisher.none.fl_str_mv |
Nature Publishing Group |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817546532884316160 |