An architecture to predict anomalies in industrial processes
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/150593 |
Resumo: | Dissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Data Science |
id |
RCAP_61620a04cc3a800aaba67b80d81f245c |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/150593 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
An architecture to predict anomalies in industrial processesPredictive MaintenanceMachine LearningIndustrial Internet of ThingsRemaining Useful LifeDissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Data ScienceThe Internet of Things (IoT) and machine learning algorithms (ML) are enabling a revolutionary change in digitization in numerous areas, benefiting Industry 4.0 in particular. Predictive maintenance using machine learning models is being used to protect assets in industry. In this paper, an architecture for predicting anomalies in industrial processes was proposed in which SMEs can be guided in implementing an IIoT architecture for predictive maintenance (PdM). This research was conducted to understand what machine learning architectures and models are generally used by industry for PdM. An overview of the concepts of the Industrial Internet of Things (IIoT), machine learning (ML), and predictive maintenance (PdM) was provided, and through a systematic literature review, it was possible to understand their applications and which technologies enable their use. The survey revealed that PdM applications are increasingly common and that there are many studies on the development of new ML techniques. The survey conducted confirmed the usefulness of the artifact and showed the need for an architecture to guide the implementation of PdM. This research can be a contribution for SMEs, allowing them to become more efficient and reduce both production and maintenance costs in order to keep up with multinational companies.Santos, Vitor Manuel Pereira Duarte dosRUNDias, Filipe Miguel Machado2023-03-15T17:43:24Z2023-01-272023-01-27T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/150593TID:203247388enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-22T18:10:00Zoai:run.unl.pt:10362/150593Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-22T18:10Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
An architecture to predict anomalies in industrial processes |
title |
An architecture to predict anomalies in industrial processes |
spellingShingle |
An architecture to predict anomalies in industrial processes Dias, Filipe Miguel Machado Predictive Maintenance Machine Learning Industrial Internet of Things Remaining Useful Life |
title_short |
An architecture to predict anomalies in industrial processes |
title_full |
An architecture to predict anomalies in industrial processes |
title_fullStr |
An architecture to predict anomalies in industrial processes |
title_full_unstemmed |
An architecture to predict anomalies in industrial processes |
title_sort |
An architecture to predict anomalies in industrial processes |
author |
Dias, Filipe Miguel Machado |
author_facet |
Dias, Filipe Miguel Machado |
author_role |
author |
dc.contributor.none.fl_str_mv |
Santos, Vitor Manuel Pereira Duarte dos RUN |
dc.contributor.author.fl_str_mv |
Dias, Filipe Miguel Machado |
dc.subject.por.fl_str_mv |
Predictive Maintenance Machine Learning Industrial Internet of Things Remaining Useful Life |
topic |
Predictive Maintenance Machine Learning Industrial Internet of Things Remaining Useful Life |
description |
Dissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Data Science |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-03-15T17:43:24Z 2023-01-27 2023-01-27T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/150593 TID:203247388 |
url |
http://hdl.handle.net/10362/150593 |
identifier_str_mv |
TID:203247388 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817545923331358720 |