Evaluation of Genotype-Based Gene Expression Model Performance: A cross-framework and cross-dataset study
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10071/23620 |
Resumo: | Predicting gene expression from genotyped data is valuable for studying inaccessible tissues such as the brain. Herein we present eGenScore, a polygenic/poly-variation method, and compare it with PrediXcan, a method based on regularized linear regression using elastic nets. While both methods have the same purpose of predicting gene expression based on genotype, they carry important methodological differences. We compared the performance of expression quantitative trait loci (eQTL) models to predict gene expression in the frontal cortex, comparing across these frameworks (eGenScore vs. PrediXcan) and training datasets (BrainEAC, which is brain-specific, vs. GTEx, which has data across multiple tissues). In addition to internal five-fold cross-validation, we externally validated the gene expression models using the CommonMind Consortium database. Our results showed that (1) PrediXcan outperforms eGenScore regardless of the training database used; and (2) when using PrediXcan, the performance of the eQTL models in frontal cortex is higher when trained with GTEx than with BrainEAC. |
id |
RCAP_61b1198ed3991904ad405cae4a92f29a |
---|---|
oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/23620 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Evaluation of Genotype-Based Gene Expression Model Performance: A cross-framework and cross-dataset studyExpression quantitative trait lociGene expressionGenome wide association studyPolygenic scoreTranscriptomePredicting gene expression from genotyped data is valuable for studying inaccessible tissues such as the brain. Herein we present eGenScore, a polygenic/poly-variation method, and compare it with PrediXcan, a method based on regularized linear regression using elastic nets. While both methods have the same purpose of predicting gene expression based on genotype, they carry important methodological differences. We compared the performance of expression quantitative trait loci (eQTL) models to predict gene expression in the frontal cortex, comparing across these frameworks (eGenScore vs. PrediXcan) and training datasets (BrainEAC, which is brain-specific, vs. GTEx, which has data across multiple tissues). In addition to internal five-fold cross-validation, we externally validated the gene expression models using the CommonMind Consortium database. Our results showed that (1) PrediXcan outperforms eGenScore regardless of the training database used; and (2) when using PrediXcan, the performance of the eQTL models in frontal cortex is higher when trained with GTEx than with BrainEAC.MDPI2021-12-02T15:17:27Z2021-01-01T00:00:00Z20212021-12-02T15:16:52Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10071/23620eng2073-442510.3390/genes12101531Tavares, V.Monteiro, J.Vassos, E.Coleman, J.Prata, D.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:57:49Zoai:repositorio.iscte-iul.pt:10071/23620Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:29:56.294356Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Evaluation of Genotype-Based Gene Expression Model Performance: A cross-framework and cross-dataset study |
title |
Evaluation of Genotype-Based Gene Expression Model Performance: A cross-framework and cross-dataset study |
spellingShingle |
Evaluation of Genotype-Based Gene Expression Model Performance: A cross-framework and cross-dataset study Tavares, V. Expression quantitative trait loci Gene expression Genome wide association study Polygenic score Transcriptome |
title_short |
Evaluation of Genotype-Based Gene Expression Model Performance: A cross-framework and cross-dataset study |
title_full |
Evaluation of Genotype-Based Gene Expression Model Performance: A cross-framework and cross-dataset study |
title_fullStr |
Evaluation of Genotype-Based Gene Expression Model Performance: A cross-framework and cross-dataset study |
title_full_unstemmed |
Evaluation of Genotype-Based Gene Expression Model Performance: A cross-framework and cross-dataset study |
title_sort |
Evaluation of Genotype-Based Gene Expression Model Performance: A cross-framework and cross-dataset study |
author |
Tavares, V. |
author_facet |
Tavares, V. Monteiro, J. Vassos, E. Coleman, J. Prata, D. |
author_role |
author |
author2 |
Monteiro, J. Vassos, E. Coleman, J. Prata, D. |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Tavares, V. Monteiro, J. Vassos, E. Coleman, J. Prata, D. |
dc.subject.por.fl_str_mv |
Expression quantitative trait loci Gene expression Genome wide association study Polygenic score Transcriptome |
topic |
Expression quantitative trait loci Gene expression Genome wide association study Polygenic score Transcriptome |
description |
Predicting gene expression from genotyped data is valuable for studying inaccessible tissues such as the brain. Herein we present eGenScore, a polygenic/poly-variation method, and compare it with PrediXcan, a method based on regularized linear regression using elastic nets. While both methods have the same purpose of predicting gene expression based on genotype, they carry important methodological differences. We compared the performance of expression quantitative trait loci (eQTL) models to predict gene expression in the frontal cortex, comparing across these frameworks (eGenScore vs. PrediXcan) and training datasets (BrainEAC, which is brain-specific, vs. GTEx, which has data across multiple tissues). In addition to internal five-fold cross-validation, we externally validated the gene expression models using the CommonMind Consortium database. Our results showed that (1) PrediXcan outperforms eGenScore regardless of the training database used; and (2) when using PrediXcan, the performance of the eQTL models in frontal cortex is higher when trained with GTEx than with BrainEAC. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-12-02T15:17:27Z 2021-01-01T00:00:00Z 2021 2021-12-02T15:16:52Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10071/23620 |
url |
http://hdl.handle.net/10071/23620 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2073-4425 10.3390/genes12101531 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134862011006976 |