Evaluation of Genotype-Based Gene Expression Model Performance: A cross-framework and cross-dataset study

Detalhes bibliográficos
Autor(a) principal: Tavares, V.
Data de Publicação: 2021
Outros Autores: Monteiro, J., Vassos, E., Coleman, J., Prata, D.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10071/23620
Resumo: Predicting gene expression from genotyped data is valuable for studying inaccessible tissues such as the brain. Herein we present eGenScore, a polygenic/poly-variation method, and compare it with PrediXcan, a method based on regularized linear regression using elastic nets. While both methods have the same purpose of predicting gene expression based on genotype, they carry important methodological differences. We compared the performance of expression quantitative trait loci (eQTL) models to predict gene expression in the frontal cortex, comparing across these frameworks (eGenScore vs. PrediXcan) and training datasets (BrainEAC, which is brain-specific, vs. GTEx, which has data across multiple tissues). In addition to internal five-fold cross-validation, we externally validated the gene expression models using the CommonMind Consortium database. Our results showed that (1) PrediXcan outperforms eGenScore regardless of the training database used; and (2) when using PrediXcan, the performance of the eQTL models in frontal cortex is higher when trained with GTEx than with BrainEAC.
id RCAP_61b1198ed3991904ad405cae4a92f29a
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/23620
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Evaluation of Genotype-Based Gene Expression Model Performance: A cross-framework and cross-dataset studyExpression quantitative trait lociGene expressionGenome wide association studyPolygenic scoreTranscriptomePredicting gene expression from genotyped data is valuable for studying inaccessible tissues such as the brain. Herein we present eGenScore, a polygenic/poly-variation method, and compare it with PrediXcan, a method based on regularized linear regression using elastic nets. While both methods have the same purpose of predicting gene expression based on genotype, they carry important methodological differences. We compared the performance of expression quantitative trait loci (eQTL) models to predict gene expression in the frontal cortex, comparing across these frameworks (eGenScore vs. PrediXcan) and training datasets (BrainEAC, which is brain-specific, vs. GTEx, which has data across multiple tissues). In addition to internal five-fold cross-validation, we externally validated the gene expression models using the CommonMind Consortium database. Our results showed that (1) PrediXcan outperforms eGenScore regardless of the training database used; and (2) when using PrediXcan, the performance of the eQTL models in frontal cortex is higher when trained with GTEx than with BrainEAC.MDPI2021-12-02T15:17:27Z2021-01-01T00:00:00Z20212021-12-02T15:16:52Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10071/23620eng2073-442510.3390/genes12101531Tavares, V.Monteiro, J.Vassos, E.Coleman, J.Prata, D.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:57:49Zoai:repositorio.iscte-iul.pt:10071/23620Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:29:56.294356Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Evaluation of Genotype-Based Gene Expression Model Performance: A cross-framework and cross-dataset study
title Evaluation of Genotype-Based Gene Expression Model Performance: A cross-framework and cross-dataset study
spellingShingle Evaluation of Genotype-Based Gene Expression Model Performance: A cross-framework and cross-dataset study
Tavares, V.
Expression quantitative trait loci
Gene expression
Genome wide association study
Polygenic score
Transcriptome
title_short Evaluation of Genotype-Based Gene Expression Model Performance: A cross-framework and cross-dataset study
title_full Evaluation of Genotype-Based Gene Expression Model Performance: A cross-framework and cross-dataset study
title_fullStr Evaluation of Genotype-Based Gene Expression Model Performance: A cross-framework and cross-dataset study
title_full_unstemmed Evaluation of Genotype-Based Gene Expression Model Performance: A cross-framework and cross-dataset study
title_sort Evaluation of Genotype-Based Gene Expression Model Performance: A cross-framework and cross-dataset study
author Tavares, V.
author_facet Tavares, V.
Monteiro, J.
Vassos, E.
Coleman, J.
Prata, D.
author_role author
author2 Monteiro, J.
Vassos, E.
Coleman, J.
Prata, D.
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Tavares, V.
Monteiro, J.
Vassos, E.
Coleman, J.
Prata, D.
dc.subject.por.fl_str_mv Expression quantitative trait loci
Gene expression
Genome wide association study
Polygenic score
Transcriptome
topic Expression quantitative trait loci
Gene expression
Genome wide association study
Polygenic score
Transcriptome
description Predicting gene expression from genotyped data is valuable for studying inaccessible tissues such as the brain. Herein we present eGenScore, a polygenic/poly-variation method, and compare it with PrediXcan, a method based on regularized linear regression using elastic nets. While both methods have the same purpose of predicting gene expression based on genotype, they carry important methodological differences. We compared the performance of expression quantitative trait loci (eQTL) models to predict gene expression in the frontal cortex, comparing across these frameworks (eGenScore vs. PrediXcan) and training datasets (BrainEAC, which is brain-specific, vs. GTEx, which has data across multiple tissues). In addition to internal five-fold cross-validation, we externally validated the gene expression models using the CommonMind Consortium database. Our results showed that (1) PrediXcan outperforms eGenScore regardless of the training database used; and (2) when using PrediXcan, the performance of the eQTL models in frontal cortex is higher when trained with GTEx than with BrainEAC.
publishDate 2021
dc.date.none.fl_str_mv 2021-12-02T15:17:27Z
2021-01-01T00:00:00Z
2021
2021-12-02T15:16:52Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10071/23620
url http://hdl.handle.net/10071/23620
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2073-4425
10.3390/genes12101531
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134862011006976