Parallelization of web processing services on cloud computing: A case study of Geostatistical Methods

Detalhes bibliográficos
Autor(a) principal: Murillo, Carlos Andrés Osorio
Data de Publicação: 2011
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/8294
Resumo: Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
id RCAP_61bbe2d56a0bf1cb5823dbd95ac682d5
oai_identifier_str oai:run.unl.pt:10362/8294
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Parallelization of web processing services on cloud computing: A case study of Geostatistical MethodsWeb Processing ServicesParallelization AlgorithmsInterpolationGeostatisticsCloud ComputingDissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.In the last decade the publication of geographic information has increased in Internet, especially with the emergence of new technologies to share information. This information requires the use of technologies of geoprocessing online that use new platforms such as Cloud Computing. This thesis work evaluates the parallelization of geoprocesses on the Cloud platform Amazon Web Service (AWS), through OGC Web Processing Services (WPS) using the 52North WPS framework. This evaluation is performed using a new implementation of a Geostatistical library in Java with parallelization capabilities. The geoprocessing is tested by incrementing the number of micro instances on the Cloud through GridGain technology. The Geostatistical library obtains similar interpolated values compared with the software ArcGIS. In the Inverse Distance Weight (IDW) and Radial Basis Functions (RBF) methods were not found differences. In the Ordinary and Universal Kriging methods differences have been found of 0.01% regarding the Root Mean Square (RMS) error.The parallelization process demonstrates that the duration of the interpolation decreases when the number of nodes increases. The duration behavior depends on the size of input dataset and the number of pixels to be interpolated. The maximum reduction in time was found with the largest configuration used in the research (1.000.000 of pixels and a dataset of 10.000 points). The execution time decreased in 83% working with 10 nodes in the Ordinary Kriging and IDW methods. However, the differences in duration working with 5 nodes and 10 nodes were not statistically significant. The reductions with 5 nodes were 72% and 71% in the Ordinary Kriging and IDW methods respectively. Finally, the experiments show that the geoprocessing on Cloud Computing is feasible using the WPS interface. The performance of the geostatistical methods deployed through the WPS services can improve by the parallelization technique. This thesis proves that the parallelization on the Cloud is viable using a Grid configuration. The evaluation also showed that parallelization of geoprocesses on the Cloud for academic purposes is inexpensive using Amazon AWS platform.Huerta Guijarro, JoaquínRemke, AlbertPainho, Marco Octávio TrindadeRUNMurillo, Carlos Andrés Osorio2012-12-04T14:24:05Z2011-03-072011-03-07T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/8294enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T03:40:51Zoai:run.unl.pt:10362/8294Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:18:07.120378Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Parallelization of web processing services on cloud computing: A case study of Geostatistical Methods
title Parallelization of web processing services on cloud computing: A case study of Geostatistical Methods
spellingShingle Parallelization of web processing services on cloud computing: A case study of Geostatistical Methods
Murillo, Carlos Andrés Osorio
Web Processing Services
Parallelization Algorithms
Interpolation
Geostatistics
Cloud Computing
title_short Parallelization of web processing services on cloud computing: A case study of Geostatistical Methods
title_full Parallelization of web processing services on cloud computing: A case study of Geostatistical Methods
title_fullStr Parallelization of web processing services on cloud computing: A case study of Geostatistical Methods
title_full_unstemmed Parallelization of web processing services on cloud computing: A case study of Geostatistical Methods
title_sort Parallelization of web processing services on cloud computing: A case study of Geostatistical Methods
author Murillo, Carlos Andrés Osorio
author_facet Murillo, Carlos Andrés Osorio
author_role author
dc.contributor.none.fl_str_mv Huerta Guijarro, Joaquín
Remke, Albert
Painho, Marco Octávio Trindade
RUN
dc.contributor.author.fl_str_mv Murillo, Carlos Andrés Osorio
dc.subject.por.fl_str_mv Web Processing Services
Parallelization Algorithms
Interpolation
Geostatistics
Cloud Computing
topic Web Processing Services
Parallelization Algorithms
Interpolation
Geostatistics
Cloud Computing
description Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
publishDate 2011
dc.date.none.fl_str_mv 2011-03-07
2011-03-07T00:00:00Z
2012-12-04T14:24:05Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/8294
url http://hdl.handle.net/10362/8294
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137827209871360