Enhancing temporal series of sentinel-2 and sentinel-3 data products: from classical regression to deep learning approach
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/113706 |
Resumo: | Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies |
id |
RCAP_6273e718a6687ce0cabd250afe74f479 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/113706 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Enhancing temporal series of sentinel-2 and sentinel-3 data products: from classical regression to deep learning approachSentinel-2Sentinel-3Inter-sensor Data Products EstimationMachine LearningDeep LearningConvolutional Neural NetworkSDG 2 - Zero hungerSDG 3 - Good health and well-beingDissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial TechnologiesThe free and open availability of satellite images covering global extent in recent days provides many novel opportunities for global monitoring of the earth’s surface. Sentinel-2 (S2) and Sentinel-3 (S3) satellite missions capture mid to high resolution imagery with frequent revisit and show data synergy as they both focus on land and ocean observational needs. Specifically, the high temporal resolution of S3 (1-2 day revisit) presents potential in filling the data gaps in S2 (5 day revisit) vegetation products. In this scenario, this study assesses the feasibility of using Sentinel-3 images for Sentinel-2 vegetation products estimation using machine learning (ML) and deep learning (DL) approaches. This study employs four state of the art ML regression algorithms, linear regression, ridge regression, Support Vector Regression (SVR) and Random Forest Regression (RFR) and two DL network architectures with different depth and complexities, Multi-Layer Perceptron (MLP) and Convolutional Neural Network (CNN) to predict the S2 NDVI and SAVI maps from the S3 spectral bands information. A paired S2/S3 dataset is prepared for the study area covering one S2 tile in Extremadura, Spain. The results demonstrate that all the DL architectures except pixel-wise MLP outperformed the ML models with the 3D CNN performing the best. The best performing 3D CNN architecture obtained remarkable mean squared error (MSE) of 0.00198 for NDVI and 0.00282 for SAVI while the best performing ML algorithms were patch-wise RFR with MSE of 0.0035 in case of NDVI and patchwise SVR with MSE of 0.00586 for SAVI. The models and the dataset prepared for this study will be useful for further research that focus on capitalizing the free and open availability of Sentinel-2 and Sentinel-3 imagery as well as new and advanced technologies to provide better vegetation monitoring capabilities for our planet.Pla Bañón, FilibertoFernández-Beltrán, RubénCaetano, Mário Sílvio Rochinha de AndradeRUNShrestha, Anu Bhalu2021-03-11T15:22:45Z2021-03-052021-03-05T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/113706TID:202670902enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:56:36Zoai:run.unl.pt:10362/113706Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:42:22.208203Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Enhancing temporal series of sentinel-2 and sentinel-3 data products: from classical regression to deep learning approach |
title |
Enhancing temporal series of sentinel-2 and sentinel-3 data products: from classical regression to deep learning approach |
spellingShingle |
Enhancing temporal series of sentinel-2 and sentinel-3 data products: from classical regression to deep learning approach Shrestha, Anu Bhalu Sentinel-2 Sentinel-3 Inter-sensor Data Products Estimation Machine Learning Deep Learning Convolutional Neural Network SDG 2 - Zero hunger SDG 3 - Good health and well-being |
title_short |
Enhancing temporal series of sentinel-2 and sentinel-3 data products: from classical regression to deep learning approach |
title_full |
Enhancing temporal series of sentinel-2 and sentinel-3 data products: from classical regression to deep learning approach |
title_fullStr |
Enhancing temporal series of sentinel-2 and sentinel-3 data products: from classical regression to deep learning approach |
title_full_unstemmed |
Enhancing temporal series of sentinel-2 and sentinel-3 data products: from classical regression to deep learning approach |
title_sort |
Enhancing temporal series of sentinel-2 and sentinel-3 data products: from classical regression to deep learning approach |
author |
Shrestha, Anu Bhalu |
author_facet |
Shrestha, Anu Bhalu |
author_role |
author |
dc.contributor.none.fl_str_mv |
Pla Bañón, Filiberto Fernández-Beltrán, Rubén Caetano, Mário Sílvio Rochinha de Andrade RUN |
dc.contributor.author.fl_str_mv |
Shrestha, Anu Bhalu |
dc.subject.por.fl_str_mv |
Sentinel-2 Sentinel-3 Inter-sensor Data Products Estimation Machine Learning Deep Learning Convolutional Neural Network SDG 2 - Zero hunger SDG 3 - Good health and well-being |
topic |
Sentinel-2 Sentinel-3 Inter-sensor Data Products Estimation Machine Learning Deep Learning Convolutional Neural Network SDG 2 - Zero hunger SDG 3 - Good health and well-being |
description |
Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-03-11T15:22:45Z 2021-03-05 2021-03-05T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/113706 TID:202670902 |
url |
http://hdl.handle.net/10362/113706 |
identifier_str_mv |
TID:202670902 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138035102646272 |