Representations and properties of the W-weighted core-EP inverse

Detalhes bibliográficos
Autor(a) principal: Gao, Yuefeng
Data de Publicação: 2020
Outros Autores: Chen, Jianlong, Patrício, Pedro
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/71071
Resumo: In this paper, we investigate the weighted core-EP inverse introduced by Ferreyra, Levis and Thome. Several computational representations of the weighted core-EP inverse are obtained in terms of singular-value decomposition, full-rank decomposition and QR decomposition. These representations are expressed in terms of various matrix powers as well as matrix product involving the core-EP inverse, Moore-Penrose inverse and usual matrix inverse. Finally, those representations involving only Moore-Penrose inverse are compared and analyzed via computational complexity and numerical examples.
id RCAP_62901c7694d6ce81f81fdfadd5c2b1ec
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/71071
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Representations and properties of the W-weighted core-EP inverseShmuel FriedlandWeighted core-EP inverseCore-EP inversePseudo core inverseOuter inverseComplexity15A0965F2068Q25Science & TechnologyIn this paper, we investigate the weighted core-EP inverse introduced by Ferreyra, Levis and Thome. Several computational representations of the weighted core-EP inverse are obtained in terms of singular-value decomposition, full-rank decomposition and QR decomposition. These representations are expressed in terms of various matrix powers as well as matrix product involving the core-EP inverse, Moore-Penrose inverse and usual matrix inverse. Finally, those representations involving only Moore-Penrose inverse are compared and analyzed via computational complexity and numerical examples.This research is supported by the National Natural Science Foundation of China (No.11771076), the Scientific Innovation Research of College Graduates in Jiangsu Province (No.KYZZ16 0112), Partially supported by FCT- ‘Fundação para a Ciência e a Tecnologia’, within the project UID-MAT-00013/2013.Taylor & Francis LtdUniversidade do MinhoGao, YuefengChen, JianlongPatrício, Pedro2020-06-022020-06-02T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/71071eng0308-10871563-513910.1080/03081087.2018.1535573https://www.tandfonline.com/doi/full/10.1080/03081087.2018.1535573info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:42:04Zoai:repositorium.sdum.uminho.pt:1822/71071Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:39:14.134819Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Representations and properties of the W-weighted core-EP inverse
title Representations and properties of the W-weighted core-EP inverse
spellingShingle Representations and properties of the W-weighted core-EP inverse
Gao, Yuefeng
Shmuel Friedland
Weighted core-EP inverse
Core-EP inverse
Pseudo core inverse
Outer inverse
Complexity
15A09
65F20
68Q25
Science & Technology
title_short Representations and properties of the W-weighted core-EP inverse
title_full Representations and properties of the W-weighted core-EP inverse
title_fullStr Representations and properties of the W-weighted core-EP inverse
title_full_unstemmed Representations and properties of the W-weighted core-EP inverse
title_sort Representations and properties of the W-weighted core-EP inverse
author Gao, Yuefeng
author_facet Gao, Yuefeng
Chen, Jianlong
Patrício, Pedro
author_role author
author2 Chen, Jianlong
Patrício, Pedro
author2_role author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Gao, Yuefeng
Chen, Jianlong
Patrício, Pedro
dc.subject.por.fl_str_mv Shmuel Friedland
Weighted core-EP inverse
Core-EP inverse
Pseudo core inverse
Outer inverse
Complexity
15A09
65F20
68Q25
Science & Technology
topic Shmuel Friedland
Weighted core-EP inverse
Core-EP inverse
Pseudo core inverse
Outer inverse
Complexity
15A09
65F20
68Q25
Science & Technology
description In this paper, we investigate the weighted core-EP inverse introduced by Ferreyra, Levis and Thome. Several computational representations of the weighted core-EP inverse are obtained in terms of singular-value decomposition, full-rank decomposition and QR decomposition. These representations are expressed in terms of various matrix powers as well as matrix product involving the core-EP inverse, Moore-Penrose inverse and usual matrix inverse. Finally, those representations involving only Moore-Penrose inverse are compared and analyzed via computational complexity and numerical examples.
publishDate 2020
dc.date.none.fl_str_mv 2020-06-02
2020-06-02T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/71071
url http://hdl.handle.net/1822/71071
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0308-1087
1563-5139
10.1080/03081087.2018.1535573
https://www.tandfonline.com/doi/full/10.1080/03081087.2018.1535573
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Taylor & Francis Ltd
publisher.none.fl_str_mv Taylor & Francis Ltd
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132932222222336