Anaerobic LCFA degradation: a role for non-syntrophic conversions?
Autor(a) principal: | |
---|---|
Data de Publicação: | 2010 |
Outros Autores: | , , |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/33914 |
Resumo: | For many years the focus of lipids/long-chain fatty-acids (LCFA) wastewater treatment was on technological and process developments. More recently, promising results on the anaerobic treatment of LCFA-containing wastewaters[1] widened the attention to the microbiology aspects as well. In anaerobic bioreactors, LCFA can be β-oxidized to acetate and H2 by acetogenic bacteria, in obligatory syntrophy with methanogens. Presently, 14 species have been described that grow on fatty-acids in syntrophy with methanogens, all belonging to the families Syntrophomonadaceae and Syntrophaceae[2]. Among these, only 4 species are able to degrade mono- and/or polyunsaturated LCFA. The reason why the degradation of unsaturated LCFA is not more widespread remains unknown. Early studies suggested that degradation of unsaturated LCFA requires complete chain saturation prior to β-oxidation[2]. Unsaturated LCFA, such as linoleate (C18:2) and oleate (C18:1), would be metabolized through a hydrogenation step yielding stearate (C18:0), then entering the β-oxidation cycle. However, this theory is inconsistent with the observed accumulation of palmitate (C16:0) in continuous bioreactors fed with oleate[1]. We hypothesize that LCFA chain saturation might be a non-syntrophic process, i.e. unsaturated LCFA can function as electron donors and acceptors, as protons released in a first β-oxidation step can be used to hydrogenate the unsaturated hydrocarbon. To test this, linoleate (C18:2), oleate (C18:1) and a mixture of stearate (C18:0) and palmitate (C16:0) were continuously fed to bioreactors with methanogenesis-active or -inhibited anaerobic sludge. In the reactors fed with linoleate and oleate, palmitate accumulated in methanogenesis-active and -inhibited bioreactors up to concentrations of approximately 2 mM and 8 mM, respectively. In methanogenesis-inhibited bioreactors fed with a mixture of saturated LCFA (stearate and palmitate) no biological activity occurred. These results suggest the occurrence of a non-syntrophic step during the degradation of unsaturated LCFA in anaerobic bioreactors. The identification of microbial communities involved in non-syntrophic linoleate/oleate to palmitate conversion will give more insights into this novel biochemical mechanism. |
id |
RCAP_62a818913f411d3b950337f27aabe3b0 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/33914 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Anaerobic LCFA degradation: a role for non-syntrophic conversions?SyntrophyLong chain fatty-acids (LCFA)OleatePalmitateFor many years the focus of lipids/long-chain fatty-acids (LCFA) wastewater treatment was on technological and process developments. More recently, promising results on the anaerobic treatment of LCFA-containing wastewaters[1] widened the attention to the microbiology aspects as well. In anaerobic bioreactors, LCFA can be β-oxidized to acetate and H2 by acetogenic bacteria, in obligatory syntrophy with methanogens. Presently, 14 species have been described that grow on fatty-acids in syntrophy with methanogens, all belonging to the families Syntrophomonadaceae and Syntrophaceae[2]. Among these, only 4 species are able to degrade mono- and/or polyunsaturated LCFA. The reason why the degradation of unsaturated LCFA is not more widespread remains unknown. Early studies suggested that degradation of unsaturated LCFA requires complete chain saturation prior to β-oxidation[2]. Unsaturated LCFA, such as linoleate (C18:2) and oleate (C18:1), would be metabolized through a hydrogenation step yielding stearate (C18:0), then entering the β-oxidation cycle. However, this theory is inconsistent with the observed accumulation of palmitate (C16:0) in continuous bioreactors fed with oleate[1]. We hypothesize that LCFA chain saturation might be a non-syntrophic process, i.e. unsaturated LCFA can function as electron donors and acceptors, as protons released in a first β-oxidation step can be used to hydrogenate the unsaturated hydrocarbon. To test this, linoleate (C18:2), oleate (C18:1) and a mixture of stearate (C18:0) and palmitate (C16:0) were continuously fed to bioreactors with methanogenesis-active or -inhibited anaerobic sludge. In the reactors fed with linoleate and oleate, palmitate accumulated in methanogenesis-active and -inhibited bioreactors up to concentrations of approximately 2 mM and 8 mM, respectively. In methanogenesis-inhibited bioreactors fed with a mixture of saturated LCFA (stearate and palmitate) no biological activity occurred. These results suggest the occurrence of a non-syntrophic step during the degradation of unsaturated LCFA in anaerobic bioreactors. The identification of microbial communities involved in non-syntrophic linoleate/oleate to palmitate conversion will give more insights into this novel biochemical mechanism.Universidade do MinhoSousa, D. Z.Cavaleiro, A. J.Stams, Alfons Johannes MariaAlves, M. M.20102010-01-01T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/1822/33914engSousa, D. Z.; Cavaleiro, A. J.; Stams, A. J. M.; Alves, M. M., Anaerobic LCFA degradation: a role for non-syntrophic conversions?. Water Research Conference 2010. No. O2.04, Lisbon, Portugal, 11-14 April, 2010.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-11T07:27:16Zoai:repositorium.sdum.uminho.pt:1822/33914Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-11T07:27:16Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Anaerobic LCFA degradation: a role for non-syntrophic conversions? |
title |
Anaerobic LCFA degradation: a role for non-syntrophic conversions? |
spellingShingle |
Anaerobic LCFA degradation: a role for non-syntrophic conversions? Sousa, D. Z. Syntrophy Long chain fatty-acids (LCFA) Oleate Palmitate |
title_short |
Anaerobic LCFA degradation: a role for non-syntrophic conversions? |
title_full |
Anaerobic LCFA degradation: a role for non-syntrophic conversions? |
title_fullStr |
Anaerobic LCFA degradation: a role for non-syntrophic conversions? |
title_full_unstemmed |
Anaerobic LCFA degradation: a role for non-syntrophic conversions? |
title_sort |
Anaerobic LCFA degradation: a role for non-syntrophic conversions? |
author |
Sousa, D. Z. |
author_facet |
Sousa, D. Z. Cavaleiro, A. J. Stams, Alfons Johannes Maria Alves, M. M. |
author_role |
author |
author2 |
Cavaleiro, A. J. Stams, Alfons Johannes Maria Alves, M. M. |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Sousa, D. Z. Cavaleiro, A. J. Stams, Alfons Johannes Maria Alves, M. M. |
dc.subject.por.fl_str_mv |
Syntrophy Long chain fatty-acids (LCFA) Oleate Palmitate |
topic |
Syntrophy Long chain fatty-acids (LCFA) Oleate Palmitate |
description |
For many years the focus of lipids/long-chain fatty-acids (LCFA) wastewater treatment was on technological and process developments. More recently, promising results on the anaerobic treatment of LCFA-containing wastewaters[1] widened the attention to the microbiology aspects as well. In anaerobic bioreactors, LCFA can be β-oxidized to acetate and H2 by acetogenic bacteria, in obligatory syntrophy with methanogens. Presently, 14 species have been described that grow on fatty-acids in syntrophy with methanogens, all belonging to the families Syntrophomonadaceae and Syntrophaceae[2]. Among these, only 4 species are able to degrade mono- and/or polyunsaturated LCFA. The reason why the degradation of unsaturated LCFA is not more widespread remains unknown. Early studies suggested that degradation of unsaturated LCFA requires complete chain saturation prior to β-oxidation[2]. Unsaturated LCFA, such as linoleate (C18:2) and oleate (C18:1), would be metabolized through a hydrogenation step yielding stearate (C18:0), then entering the β-oxidation cycle. However, this theory is inconsistent with the observed accumulation of palmitate (C16:0) in continuous bioreactors fed with oleate[1]. We hypothesize that LCFA chain saturation might be a non-syntrophic process, i.e. unsaturated LCFA can function as electron donors and acceptors, as protons released in a first β-oxidation step can be used to hydrogenate the unsaturated hydrocarbon. To test this, linoleate (C18:2), oleate (C18:1) and a mixture of stearate (C18:0) and palmitate (C16:0) were continuously fed to bioreactors with methanogenesis-active or -inhibited anaerobic sludge. In the reactors fed with linoleate and oleate, palmitate accumulated in methanogenesis-active and -inhibited bioreactors up to concentrations of approximately 2 mM and 8 mM, respectively. In methanogenesis-inhibited bioreactors fed with a mixture of saturated LCFA (stearate and palmitate) no biological activity occurred. These results suggest the occurrence of a non-syntrophic step during the degradation of unsaturated LCFA in anaerobic bioreactors. The identification of microbial communities involved in non-syntrophic linoleate/oleate to palmitate conversion will give more insights into this novel biochemical mechanism. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010 2010-01-01T00:00:00Z |
dc.type.driver.fl_str_mv |
conference object |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/33914 |
url |
http://hdl.handle.net/1822/33914 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Sousa, D. Z.; Cavaleiro, A. J.; Stams, A. J. M.; Alves, M. M., Anaerobic LCFA degradation: a role for non-syntrophic conversions?. Water Research Conference 2010. No. O2.04, Lisbon, Portugal, 11-14 April, 2010. |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817545321431957504 |