Exposure of smaller and oxidized graphene on polyurethane surface improves its antimicrobial performance

Detalhes bibliográficos
Autor(a) principal: Borges, I
Data de Publicação: 2020
Outros Autores: Henriques, PC, Gomes, RN, Pinto, AM, Pestana, M, Magalhães, FD, Gonçalves, IC
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/10216/141472
Resumo: Catheter-related infections are a common worldwide health problem, highlighting the need for antimicrobial catheters. Here, antibacterial potential of graphene nanoplatelets (GNP) incorporated in the commonly used polymer for catheter manufacture—polyurethane (PU)—is investigated. Two strategies are explored: melt-blending, producing a composite, and dip coating, where a composite layer is deposited on top of PU. GNP with different lateral sizes and oxidation degrees—GNP-M5, GNP-M15, GNP-M5ox, GNP-M15ox—are applied in both strategies, and the antimicrobial potential towards Staphylococcus epidermidis of GNP dispersions and GNP-containing PU evaluated. As dispersions, oxidized and smaller GNP powders (GNP-M5ox) inhibit 74% bacteria growth at 128 µg/mL. As surfaces, GNP exposure strongly impacts their antimicrobial profile: GNP absence at the surface of composites yields no significant effects on bacteria, while by varying GNP: PU ratio and GNP concentration, coatings enhance GNP exposure, depicting an antimicrobial profile. Oxidized GNP-containing coatings induce higher antibacterial effect than non-oxidized forms, particularly with smaller GNPox, where a homogeneous layer of fused platelets is formed on PU, leading to 70% reduction in bacterial adhesion and 70% bacterial death. This pioneering work unravels how to turn a polymer clinically used to produce catheters into an antimicrobial surface, crucial to reducing risk of infection associated with catheterization.
id RCAP_62f66791eebb00eb9cb302ffcb1e6aea
oai_identifier_str oai:repositorio-aberto.up.pt:10216/141472
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Exposure of smaller and oxidized graphene on polyurethane surface improves its antimicrobial performanceCatheter-related infections are a common worldwide health problem, highlighting the need for antimicrobial catheters. Here, antibacterial potential of graphene nanoplatelets (GNP) incorporated in the commonly used polymer for catheter manufacture—polyurethane (PU)—is investigated. Two strategies are explored: melt-blending, producing a composite, and dip coating, where a composite layer is deposited on top of PU. GNP with different lateral sizes and oxidation degrees—GNP-M5, GNP-M15, GNP-M5ox, GNP-M15ox—are applied in both strategies, and the antimicrobial potential towards Staphylococcus epidermidis of GNP dispersions and GNP-containing PU evaluated. As dispersions, oxidized and smaller GNP powders (GNP-M5ox) inhibit 74% bacteria growth at 128 µg/mL. As surfaces, GNP exposure strongly impacts their antimicrobial profile: GNP absence at the surface of composites yields no significant effects on bacteria, while by varying GNP: PU ratio and GNP concentration, coatings enhance GNP exposure, depicting an antimicrobial profile. Oxidized GNP-containing coatings induce higher antibacterial effect than non-oxidized forms, particularly with smaller GNPox, where a homogeneous layer of fused platelets is formed on PU, leading to 70% reduction in bacterial adhesion and 70% bacterial death. This pioneering work unravels how to turn a polymer clinically used to produce catheters into an antimicrobial surface, crucial to reducing risk of infection associated with catheterization.MDPI20202020-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/10216/141472eng2079-499110.3390/nano10020349Borges, IHenriques, PCGomes, RNPinto, AMPestana, MMagalhães, FDGonçalves, ICinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-09-27T08:18:42Zoai:repositorio-aberto.up.pt:10216/141472Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-09-27T08:18:42Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Exposure of smaller and oxidized graphene on polyurethane surface improves its antimicrobial performance
title Exposure of smaller and oxidized graphene on polyurethane surface improves its antimicrobial performance
spellingShingle Exposure of smaller and oxidized graphene on polyurethane surface improves its antimicrobial performance
Borges, I
title_short Exposure of smaller and oxidized graphene on polyurethane surface improves its antimicrobial performance
title_full Exposure of smaller and oxidized graphene on polyurethane surface improves its antimicrobial performance
title_fullStr Exposure of smaller and oxidized graphene on polyurethane surface improves its antimicrobial performance
title_full_unstemmed Exposure of smaller and oxidized graphene on polyurethane surface improves its antimicrobial performance
title_sort Exposure of smaller and oxidized graphene on polyurethane surface improves its antimicrobial performance
author Borges, I
author_facet Borges, I
Henriques, PC
Gomes, RN
Pinto, AM
Pestana, M
Magalhães, FD
Gonçalves, IC
author_role author
author2 Henriques, PC
Gomes, RN
Pinto, AM
Pestana, M
Magalhães, FD
Gonçalves, IC
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Borges, I
Henriques, PC
Gomes, RN
Pinto, AM
Pestana, M
Magalhães, FD
Gonçalves, IC
description Catheter-related infections are a common worldwide health problem, highlighting the need for antimicrobial catheters. Here, antibacterial potential of graphene nanoplatelets (GNP) incorporated in the commonly used polymer for catheter manufacture—polyurethane (PU)—is investigated. Two strategies are explored: melt-blending, producing a composite, and dip coating, where a composite layer is deposited on top of PU. GNP with different lateral sizes and oxidation degrees—GNP-M5, GNP-M15, GNP-M5ox, GNP-M15ox—are applied in both strategies, and the antimicrobial potential towards Staphylococcus epidermidis of GNP dispersions and GNP-containing PU evaluated. As dispersions, oxidized and smaller GNP powders (GNP-M5ox) inhibit 74% bacteria growth at 128 µg/mL. As surfaces, GNP exposure strongly impacts their antimicrobial profile: GNP absence at the surface of composites yields no significant effects on bacteria, while by varying GNP: PU ratio and GNP concentration, coatings enhance GNP exposure, depicting an antimicrobial profile. Oxidized GNP-containing coatings induce higher antibacterial effect than non-oxidized forms, particularly with smaller GNPox, where a homogeneous layer of fused platelets is formed on PU, leading to 70% reduction in bacterial adhesion and 70% bacterial death. This pioneering work unravels how to turn a polymer clinically used to produce catheters into an antimicrobial surface, crucial to reducing risk of infection associated with catheterization.
publishDate 2020
dc.date.none.fl_str_mv 2020
2020-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10216/141472
url https://hdl.handle.net/10216/141472
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2079-4991
10.3390/nano10020349
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817547853528039424