Hierarchical Clustering Based on a Two-Type Branching Process Model: A Simulation Study
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10451/54256 |
Resumo: | Tese de mestrado, Bioestatística, 2022, Universidade de Lisboa, Faculdade de Ciências |
id |
RCAP_63712f639e923b5d90f731c5d5d96748 |
---|---|
oai_identifier_str |
oai:repositorio.ul.pt:10451/54256 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Hierarchical Clustering Based on a Two-Type Branching Process Model: A Simulation StudyProcesso de ramificação Galton-Watsonagrupamento hierárquicobootstrap não paramétricosimulaçãodistância de transferênciaTeses de mestrado - 2022Departamento de Estatística e Investigação OperacionalTese de mestrado, Bioestatística, 2022, Universidade de Lisboa, Faculdade de CiênciasRecently there have been published several works that focus on clustering based on infectious disease data (e.g., Maugeri et al., 2020; Mahmoudi et al., 2020; Zarikas et al., 2020). These studies did not use the effective reproduction number in their clustering method, did not consider different types of infected individuals and the problem of ties in clustering was not thoroughly addressed. We develop a method to cluster regions based on infectious disease type-specific prevalence and typespecific reproduction numbers. To incorporate these two characteristics into one formula, the beginning of an epidemic is modelled by a two-type Galton-Watson branching process model. We define the model parameter as the expected number of total infections arising in a finite number of generations from one infected individual whose type is unknown. Nonparametric bootstrap is used for estimation of the model parameter. Empirical bootstrap distributions of the model parameter are then clustered using the supremum distance and variable-group hierarchical agglomerative single linkage clustering technique. By doing a simulation study, we examined how well the clusters obtained by bootstrap sampling distributions resemble the clusters obtained by using transformed multinomial distributions as a reference. Using the scaled version of the transfer distance as the performance measure, we found that the best performance was observed in scenarios where the prevalence was uniformly distributed, the sample size was 500 and two clusters were retained. Problematic ties occurred in approximately 0,5% of the simulations. The results suggest that our method performs well in some circumstances. When there is a large proportion of countries with low disease prevalence, the number of individuals sampled in each country should be increased. Besides that, if there is not an important reason to prefer to retain four clusters, then three or preferably two clusters should be retained to get better performance.Nunes, Maria Helena Mouriño Silva, 1969-Repositório da Universidade de LisboaVarmann, Lauri202220222024-05-30T00:00:00Z2022-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10451/54256enginfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-08T17:00:40Zoai:repositorio.ul.pt:10451/54256Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:05:10.158815Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Hierarchical Clustering Based on a Two-Type Branching Process Model: A Simulation Study |
title |
Hierarchical Clustering Based on a Two-Type Branching Process Model: A Simulation Study |
spellingShingle |
Hierarchical Clustering Based on a Two-Type Branching Process Model: A Simulation Study Varmann, Lauri Processo de ramificação Galton-Watson agrupamento hierárquico bootstrap não paramétrico simulação distância de transferência Teses de mestrado - 2022 Departamento de Estatística e Investigação Operacional |
title_short |
Hierarchical Clustering Based on a Two-Type Branching Process Model: A Simulation Study |
title_full |
Hierarchical Clustering Based on a Two-Type Branching Process Model: A Simulation Study |
title_fullStr |
Hierarchical Clustering Based on a Two-Type Branching Process Model: A Simulation Study |
title_full_unstemmed |
Hierarchical Clustering Based on a Two-Type Branching Process Model: A Simulation Study |
title_sort |
Hierarchical Clustering Based on a Two-Type Branching Process Model: A Simulation Study |
author |
Varmann, Lauri |
author_facet |
Varmann, Lauri |
author_role |
author |
dc.contributor.none.fl_str_mv |
Nunes, Maria Helena Mouriño Silva, 1969- Repositório da Universidade de Lisboa |
dc.contributor.author.fl_str_mv |
Varmann, Lauri |
dc.subject.por.fl_str_mv |
Processo de ramificação Galton-Watson agrupamento hierárquico bootstrap não paramétrico simulação distância de transferência Teses de mestrado - 2022 Departamento de Estatística e Investigação Operacional |
topic |
Processo de ramificação Galton-Watson agrupamento hierárquico bootstrap não paramétrico simulação distância de transferência Teses de mestrado - 2022 Departamento de Estatística e Investigação Operacional |
description |
Tese de mestrado, Bioestatística, 2022, Universidade de Lisboa, Faculdade de Ciências |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022 2022 2022-01-01T00:00:00Z 2024-05-30T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10451/54256 |
url |
http://hdl.handle.net/10451/54256 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134603382882304 |