Machine learning-based virtual screening, molecular docking, drug-likeness, pharmacokinetics and toxicity analyses to identify new natural inhibitors of the glycoprotein spike (S1) od SARS-CoV-2
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.21/16071 |
Resumo: | To identify natural bioactive compounds (NBCs) as potential inhibitors of the spike (S1) by means of in silico assays. NBCs with previously proven biological in vitro activity were obtained from the ZINC database and analyzed through virtual screening and molecular docking to identify those with higher affinity to the spike protein. Eight machine learning models were used to validate the results: Principal Component Analysis (PCA), Artificial Neural Network (ANN), Support Vector Machine (SVM), k-Nearest Neighbors (KNN), Partial Least Squares-Discriminant Analysis (PLS-DA), Gradient Boosted Tree Discriminant Analysis (XGBoostDA), Soft Independent Modelling of Class Analogies (SIMCA) and Logistic Regression Discriminate Analysis (LREG). Selected NBCs were submitted to drug-likeness prediction using Lipinski’s and Veber’s rule of five. A prediction of pharmacokinetic parameters and toxicity was also performed (ADMET). Antivirals currently used for COVID-19 (remdesivir and molnupiravir) were used as a comparator. A total of 170,906 compounds were analyzed. Of these, 34 showed a greater affinity with the S1 (affinity energy < -7 kcal mol-1). Most of these compounds belonged to the class of coumarins (benzopyrones), presenting a benzene ring fused to a lactone (group of heterosides). The PLS-DA model was able to reproduce the results of the virtual screening and molecular docking (accuracy of 97.0%). Of the 34 compounds, only NBC5 (feselol), NBC14, NBC15, and NBC27 had better results in ADMET predictions. These had a similar binding affinity to S1 when compared to remdesivir and molnupirvir. Feselol and three other NBCs were the most promising candidates for treating COVID-19. In vitro and in vivo studies are needed to confirm these findings. |
id |
RCAP_6387cc836ae0f0054c8a80f6d1666c8f |
---|---|
oai_identifier_str |
oai:repositorio.ipl.pt:10400.21/16071 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Machine learning-based virtual screening, molecular docking, drug-likeness, pharmacokinetics and toxicity analyses to identify new natural inhibitors of the glycoprotein spike (S1) od SARS-CoV-2COVID-19SARS-CoV-2In silicoSpike glycoproteinTreatmentTo identify natural bioactive compounds (NBCs) as potential inhibitors of the spike (S1) by means of in silico assays. NBCs with previously proven biological in vitro activity were obtained from the ZINC database and analyzed through virtual screening and molecular docking to identify those with higher affinity to the spike protein. Eight machine learning models were used to validate the results: Principal Component Analysis (PCA), Artificial Neural Network (ANN), Support Vector Machine (SVM), k-Nearest Neighbors (KNN), Partial Least Squares-Discriminant Analysis (PLS-DA), Gradient Boosted Tree Discriminant Analysis (XGBoostDA), Soft Independent Modelling of Class Analogies (SIMCA) and Logistic Regression Discriminate Analysis (LREG). Selected NBCs were submitted to drug-likeness prediction using Lipinski’s and Veber’s rule of five. A prediction of pharmacokinetic parameters and toxicity was also performed (ADMET). Antivirals currently used for COVID-19 (remdesivir and molnupiravir) were used as a comparator. A total of 170,906 compounds were analyzed. Of these, 34 showed a greater affinity with the S1 (affinity energy < -7 kcal mol-1). Most of these compounds belonged to the class of coumarins (benzopyrones), presenting a benzene ring fused to a lactone (group of heterosides). The PLS-DA model was able to reproduce the results of the virtual screening and molecular docking (accuracy of 97.0%). Of the 34 compounds, only NBC5 (feselol), NBC14, NBC15, and NBC27 had better results in ADMET predictions. These had a similar binding affinity to S1 when compared to remdesivir and molnupirvir. Feselol and three other NBCs were the most promising candidates for treating COVID-19. In vitro and in vivo studies are needed to confirm these findings.RCIPLCobre, AlexandreBöger, BeatrizFachi, MarianaEhrenfried, CarlosStremel, DileDe Melo, EduardoTonin, FernandaPontarolo, Roberto2023-05-18T10:17:21Z2023-032023-03-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.21/16071engCobre AF, Böger B, Fachi MM, Ehrenfried CA, Stremel DP, Tonin FS, et al. Machine learning-based virtual screening, molecular docking, drug-likeness, pharmacokinetics and toxicity analyses to identify new natural inhibitors of the glycoprotein spike (S1) od SARS-CoV-2. Quim Nova. 2023;46(5):450-9.10.21577/0100-4042.20230038info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-08-03T10:14:20Zoai:repositorio.ipl.pt:10400.21/16071Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:23:40.412052Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Machine learning-based virtual screening, molecular docking, drug-likeness, pharmacokinetics and toxicity analyses to identify new natural inhibitors of the glycoprotein spike (S1) od SARS-CoV-2 |
title |
Machine learning-based virtual screening, molecular docking, drug-likeness, pharmacokinetics and toxicity analyses to identify new natural inhibitors of the glycoprotein spike (S1) od SARS-CoV-2 |
spellingShingle |
Machine learning-based virtual screening, molecular docking, drug-likeness, pharmacokinetics and toxicity analyses to identify new natural inhibitors of the glycoprotein spike (S1) od SARS-CoV-2 Cobre, Alexandre COVID-19 SARS-CoV-2 In silico Spike glycoprotein Treatment |
title_short |
Machine learning-based virtual screening, molecular docking, drug-likeness, pharmacokinetics and toxicity analyses to identify new natural inhibitors of the glycoprotein spike (S1) od SARS-CoV-2 |
title_full |
Machine learning-based virtual screening, molecular docking, drug-likeness, pharmacokinetics and toxicity analyses to identify new natural inhibitors of the glycoprotein spike (S1) od SARS-CoV-2 |
title_fullStr |
Machine learning-based virtual screening, molecular docking, drug-likeness, pharmacokinetics and toxicity analyses to identify new natural inhibitors of the glycoprotein spike (S1) od SARS-CoV-2 |
title_full_unstemmed |
Machine learning-based virtual screening, molecular docking, drug-likeness, pharmacokinetics and toxicity analyses to identify new natural inhibitors of the glycoprotein spike (S1) od SARS-CoV-2 |
title_sort |
Machine learning-based virtual screening, molecular docking, drug-likeness, pharmacokinetics and toxicity analyses to identify new natural inhibitors of the glycoprotein spike (S1) od SARS-CoV-2 |
author |
Cobre, Alexandre |
author_facet |
Cobre, Alexandre Böger, Beatriz Fachi, Mariana Ehrenfried, Carlos Stremel, Dile De Melo, Eduardo Tonin, Fernanda Pontarolo, Roberto |
author_role |
author |
author2 |
Böger, Beatriz Fachi, Mariana Ehrenfried, Carlos Stremel, Dile De Melo, Eduardo Tonin, Fernanda Pontarolo, Roberto |
author2_role |
author author author author author author author |
dc.contributor.none.fl_str_mv |
RCIPL |
dc.contributor.author.fl_str_mv |
Cobre, Alexandre Böger, Beatriz Fachi, Mariana Ehrenfried, Carlos Stremel, Dile De Melo, Eduardo Tonin, Fernanda Pontarolo, Roberto |
dc.subject.por.fl_str_mv |
COVID-19 SARS-CoV-2 In silico Spike glycoprotein Treatment |
topic |
COVID-19 SARS-CoV-2 In silico Spike glycoprotein Treatment |
description |
To identify natural bioactive compounds (NBCs) as potential inhibitors of the spike (S1) by means of in silico assays. NBCs with previously proven biological in vitro activity were obtained from the ZINC database and analyzed through virtual screening and molecular docking to identify those with higher affinity to the spike protein. Eight machine learning models were used to validate the results: Principal Component Analysis (PCA), Artificial Neural Network (ANN), Support Vector Machine (SVM), k-Nearest Neighbors (KNN), Partial Least Squares-Discriminant Analysis (PLS-DA), Gradient Boosted Tree Discriminant Analysis (XGBoostDA), Soft Independent Modelling of Class Analogies (SIMCA) and Logistic Regression Discriminate Analysis (LREG). Selected NBCs were submitted to drug-likeness prediction using Lipinski’s and Veber’s rule of five. A prediction of pharmacokinetic parameters and toxicity was also performed (ADMET). Antivirals currently used for COVID-19 (remdesivir and molnupiravir) were used as a comparator. A total of 170,906 compounds were analyzed. Of these, 34 showed a greater affinity with the S1 (affinity energy < -7 kcal mol-1). Most of these compounds belonged to the class of coumarins (benzopyrones), presenting a benzene ring fused to a lactone (group of heterosides). The PLS-DA model was able to reproduce the results of the virtual screening and molecular docking (accuracy of 97.0%). Of the 34 compounds, only NBC5 (feselol), NBC14, NBC15, and NBC27 had better results in ADMET predictions. These had a similar binding affinity to S1 when compared to remdesivir and molnupirvir. Feselol and three other NBCs were the most promising candidates for treating COVID-19. In vitro and in vivo studies are needed to confirm these findings. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-05-18T10:17:21Z 2023-03 2023-03-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.21/16071 |
url |
http://hdl.handle.net/10400.21/16071 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Cobre AF, Böger B, Fachi MM, Ehrenfried CA, Stremel DP, Tonin FS, et al. Machine learning-based virtual screening, molecular docking, drug-likeness, pharmacokinetics and toxicity analyses to identify new natural inhibitors of the glycoprotein spike (S1) od SARS-CoV-2. Quim Nova. 2023;46(5):450-9. 10.21577/0100-4042.20230038 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1817553852924166144 |