Completeness in Equational Hybrid Propositional Type Theory
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/27104 |
Resumo: | Equational Hybrid Propositional Type Theory (EHPTT) is a combination of propositional type theory, equational logic and hybrid modal logic. The structures used to interpret the language contain a hierarchy of propositional types, an algebra (a nonempty set with functions) and a Kripke frame. The main result in this paper is the proof of completeness of a calculus specifically defined for this logic. The completeness proof is based on the three proofs Henkin published last century: (i) Completeness in type theory (ii) The completeness of the first-order functional calculus and (iii) Completeness in propositional type theory. More precisely, from (i) and (ii) we take the idea of building the model described by the maximal consistent set; in our case the maximal consistent set has to be named, ♦- saturated and extensionally algebraic-saturated due to the hybrid and equational nature of EHPTT. From (iii), we use the result that any element in the hierarchy has a name. The challenge was to deal with all the heterogeneous components in an integrated system. |
id |
RCAP_63a06c59ffa31c7255cf290951e4177f |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/27104 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Completeness in Equational Hybrid Propositional Type TheoryPropositional type theoryHybrid logicEquational logicCompletenessEquational Hybrid Propositional Type Theory (EHPTT) is a combination of propositional type theory, equational logic and hybrid modal logic. The structures used to interpret the language contain a hierarchy of propositional types, an algebra (a nonempty set with functions) and a Kripke frame. The main result in this paper is the proof of completeness of a calculus specifically defined for this logic. The completeness proof is based on the three proofs Henkin published last century: (i) Completeness in type theory (ii) The completeness of the first-order functional calculus and (iii) Completeness in propositional type theory. More precisely, from (i) and (ii) we take the idea of building the model described by the maximal consistent set; in our case the maximal consistent set has to be named, ♦- saturated and extensionally algebraic-saturated due to the hybrid and equational nature of EHPTT. From (iii), we use the result that any element in the hierarchy has a name. The challenge was to deal with all the heterogeneous components in an integrated system.Springer Verlag2019-122019-12-01T00:00:00Z2020-12-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/27104eng0039-321510.1007/s11225-018-9833-5Manzano, MariaMartins, Manuel A.Huertas, Antoniainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:52:23Zoai:ria.ua.pt:10773/27104Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:59:54.890621Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Completeness in Equational Hybrid Propositional Type Theory |
title |
Completeness in Equational Hybrid Propositional Type Theory |
spellingShingle |
Completeness in Equational Hybrid Propositional Type Theory Manzano, Maria Propositional type theory Hybrid logic Equational logic Completeness |
title_short |
Completeness in Equational Hybrid Propositional Type Theory |
title_full |
Completeness in Equational Hybrid Propositional Type Theory |
title_fullStr |
Completeness in Equational Hybrid Propositional Type Theory |
title_full_unstemmed |
Completeness in Equational Hybrid Propositional Type Theory |
title_sort |
Completeness in Equational Hybrid Propositional Type Theory |
author |
Manzano, Maria |
author_facet |
Manzano, Maria Martins, Manuel A. Huertas, Antonia |
author_role |
author |
author2 |
Martins, Manuel A. Huertas, Antonia |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Manzano, Maria Martins, Manuel A. Huertas, Antonia |
dc.subject.por.fl_str_mv |
Propositional type theory Hybrid logic Equational logic Completeness |
topic |
Propositional type theory Hybrid logic Equational logic Completeness |
description |
Equational Hybrid Propositional Type Theory (EHPTT) is a combination of propositional type theory, equational logic and hybrid modal logic. The structures used to interpret the language contain a hierarchy of propositional types, an algebra (a nonempty set with functions) and a Kripke frame. The main result in this paper is the proof of completeness of a calculus specifically defined for this logic. The completeness proof is based on the three proofs Henkin published last century: (i) Completeness in type theory (ii) The completeness of the first-order functional calculus and (iii) Completeness in propositional type theory. More precisely, from (i) and (ii) we take the idea of building the model described by the maximal consistent set; in our case the maximal consistent set has to be named, ♦- saturated and extensionally algebraic-saturated due to the hybrid and equational nature of EHPTT. From (iii), we use the result that any element in the hierarchy has a name. The challenge was to deal with all the heterogeneous components in an integrated system. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-12 2019-12-01T00:00:00Z 2020-12-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/27104 |
url |
http://hdl.handle.net/10773/27104 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0039-3215 10.1007/s11225-018-9833-5 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer Verlag |
publisher.none.fl_str_mv |
Springer Verlag |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137654195879936 |