Completeness in Equational Hybrid Propositional Type Theory

Detalhes bibliográficos
Autor(a) principal: Manzano, Maria
Data de Publicação: 2019
Outros Autores: Martins, Manuel A., Huertas, Antonia
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/27104
Resumo: Equational Hybrid Propositional Type Theory (EHPTT) is a combination of propositional type theory, equational logic and hybrid modal logic. The structures used to interpret the language contain a hierarchy of propositional types, an algebra (a nonempty set with functions) and a Kripke frame. The main result in this paper is the proof of completeness of a calculus specifically defined for this logic. The completeness proof is based on the three proofs Henkin published last century: (i) Completeness in type theory (ii) The completeness of the first-order functional calculus and (iii) Completeness in propositional type theory. More precisely, from (i) and (ii) we take the idea of building the model described by the maximal consistent set; in our case the maximal consistent set has to be named, ♦- saturated and extensionally algebraic-saturated due to the hybrid and equational nature of EHPTT. From (iii), we use the result that any element in the hierarchy has a name. The challenge was to deal with all the heterogeneous components in an integrated system.
id RCAP_63a06c59ffa31c7255cf290951e4177f
oai_identifier_str oai:ria.ua.pt:10773/27104
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Completeness in Equational Hybrid Propositional Type TheoryPropositional type theoryHybrid logicEquational logicCompletenessEquational Hybrid Propositional Type Theory (EHPTT) is a combination of propositional type theory, equational logic and hybrid modal logic. The structures used to interpret the language contain a hierarchy of propositional types, an algebra (a nonempty set with functions) and a Kripke frame. The main result in this paper is the proof of completeness of a calculus specifically defined for this logic. The completeness proof is based on the three proofs Henkin published last century: (i) Completeness in type theory (ii) The completeness of the first-order functional calculus and (iii) Completeness in propositional type theory. More precisely, from (i) and (ii) we take the idea of building the model described by the maximal consistent set; in our case the maximal consistent set has to be named, ♦- saturated and extensionally algebraic-saturated due to the hybrid and equational nature of EHPTT. From (iii), we use the result that any element in the hierarchy has a name. The challenge was to deal with all the heterogeneous components in an integrated system.Springer Verlag2019-122019-12-01T00:00:00Z2020-12-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/27104eng0039-321510.1007/s11225-018-9833-5Manzano, MariaMartins, Manuel A.Huertas, Antoniainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:52:23Zoai:ria.ua.pt:10773/27104Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:59:54.890621Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Completeness in Equational Hybrid Propositional Type Theory
title Completeness in Equational Hybrid Propositional Type Theory
spellingShingle Completeness in Equational Hybrid Propositional Type Theory
Manzano, Maria
Propositional type theory
Hybrid logic
Equational logic
Completeness
title_short Completeness in Equational Hybrid Propositional Type Theory
title_full Completeness in Equational Hybrid Propositional Type Theory
title_fullStr Completeness in Equational Hybrid Propositional Type Theory
title_full_unstemmed Completeness in Equational Hybrid Propositional Type Theory
title_sort Completeness in Equational Hybrid Propositional Type Theory
author Manzano, Maria
author_facet Manzano, Maria
Martins, Manuel A.
Huertas, Antonia
author_role author
author2 Martins, Manuel A.
Huertas, Antonia
author2_role author
author
dc.contributor.author.fl_str_mv Manzano, Maria
Martins, Manuel A.
Huertas, Antonia
dc.subject.por.fl_str_mv Propositional type theory
Hybrid logic
Equational logic
Completeness
topic Propositional type theory
Hybrid logic
Equational logic
Completeness
description Equational Hybrid Propositional Type Theory (EHPTT) is a combination of propositional type theory, equational logic and hybrid modal logic. The structures used to interpret the language contain a hierarchy of propositional types, an algebra (a nonempty set with functions) and a Kripke frame. The main result in this paper is the proof of completeness of a calculus specifically defined for this logic. The completeness proof is based on the three proofs Henkin published last century: (i) Completeness in type theory (ii) The completeness of the first-order functional calculus and (iii) Completeness in propositional type theory. More precisely, from (i) and (ii) we take the idea of building the model described by the maximal consistent set; in our case the maximal consistent set has to be named, ♦- saturated and extensionally algebraic-saturated due to the hybrid and equational nature of EHPTT. From (iii), we use the result that any element in the hierarchy has a name. The challenge was to deal with all the heterogeneous components in an integrated system.
publishDate 2019
dc.date.none.fl_str_mv 2019-12
2019-12-01T00:00:00Z
2020-12-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/27104
url http://hdl.handle.net/10773/27104
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0039-3215
10.1007/s11225-018-9833-5
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer Verlag
publisher.none.fl_str_mv Springer Verlag
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137654195879936