Soundscape Generation Using Web Audio Archives

Detalhes bibliográficos
Autor(a) principal: Paulo Jorge Fernandes Teixeira
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/10216/121879
Resumo: The large and growing archives of audio content on the web have been transforming the sound design practice. In this context, sampling -- a fundamental sound design tool -- has shifted from mechanical recording to the realms of the copying and cutting on the computer. To effectively browse these large archives and retrieve content became a well-identified problem in Music Information Retrieval, namely through the adoption of audio content-based methodologies. Despite its robustness and effectiveness, current technological solutions rely mostly on (statistical) signal processing methods, whose terminology do attain a level of user-centered explanatory adequacy.This dissertation advances a novel semantically-oriented strategy for browsing and retrieving audio content, in particular, environmental sounds, from large web audio archives. Ultimately, we aim to streamline the retrieval of user-defined queries to foster a fluid generation of soundscapes. In our work, querying web audio archives is done by affective dimensions that relate to emotional states (e.g., low arousal and low valence) and semantic audio source descriptions (e.g., rain). To this end, we map human annotations of affective dimensions to spectral audio-content descriptions extracted from the signal content. Retrieving new sounds from web archives is then made by specifying a query which combines a point in a 2-dimensional affective plane and semantic tags. A prototype application, MScaper, implements the method in the Ableton Live environment. An evaluation of our research assesses the perceptual soundness of the spectral audio-content descriptors in capturing affective dimensions and the usability of MScaper. The results show that spectral audio features significantly capture affective dimensions and that MScaper has been perceived by expert-users as having excellent usability.
id RCAP_64015e4b11766119911b7b6f64dbdbef
oai_identifier_str oai:repositorio-aberto.up.pt:10216/121879
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Soundscape Generation Using Web Audio ArchivesOutras ciências da engenharia e tecnologiasOther engineering and technologiesThe large and growing archives of audio content on the web have been transforming the sound design practice. In this context, sampling -- a fundamental sound design tool -- has shifted from mechanical recording to the realms of the copying and cutting on the computer. To effectively browse these large archives and retrieve content became a well-identified problem in Music Information Retrieval, namely through the adoption of audio content-based methodologies. Despite its robustness and effectiveness, current technological solutions rely mostly on (statistical) signal processing methods, whose terminology do attain a level of user-centered explanatory adequacy.This dissertation advances a novel semantically-oriented strategy for browsing and retrieving audio content, in particular, environmental sounds, from large web audio archives. Ultimately, we aim to streamline the retrieval of user-defined queries to foster a fluid generation of soundscapes. In our work, querying web audio archives is done by affective dimensions that relate to emotional states (e.g., low arousal and low valence) and semantic audio source descriptions (e.g., rain). To this end, we map human annotations of affective dimensions to spectral audio-content descriptions extracted from the signal content. Retrieving new sounds from web archives is then made by specifying a query which combines a point in a 2-dimensional affective plane and semantic tags. A prototype application, MScaper, implements the method in the Ableton Live environment. An evaluation of our research assesses the perceptual soundness of the spectral audio-content descriptors in capturing affective dimensions and the usability of MScaper. The results show that spectral audio features significantly capture affective dimensions and that MScaper has been perceived by expert-users as having excellent usability.2019-07-172019-07-17T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://hdl.handle.net/10216/121879TID:202396363engPaulo Jorge Fernandes Teixeirainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T15:11:14Zoai:repositorio-aberto.up.pt:10216/121879Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:17:39.939188Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Soundscape Generation Using Web Audio Archives
title Soundscape Generation Using Web Audio Archives
spellingShingle Soundscape Generation Using Web Audio Archives
Paulo Jorge Fernandes Teixeira
Outras ciências da engenharia e tecnologias
Other engineering and technologies
title_short Soundscape Generation Using Web Audio Archives
title_full Soundscape Generation Using Web Audio Archives
title_fullStr Soundscape Generation Using Web Audio Archives
title_full_unstemmed Soundscape Generation Using Web Audio Archives
title_sort Soundscape Generation Using Web Audio Archives
author Paulo Jorge Fernandes Teixeira
author_facet Paulo Jorge Fernandes Teixeira
author_role author
dc.contributor.author.fl_str_mv Paulo Jorge Fernandes Teixeira
dc.subject.por.fl_str_mv Outras ciências da engenharia e tecnologias
Other engineering and technologies
topic Outras ciências da engenharia e tecnologias
Other engineering and technologies
description The large and growing archives of audio content on the web have been transforming the sound design practice. In this context, sampling -- a fundamental sound design tool -- has shifted from mechanical recording to the realms of the copying and cutting on the computer. To effectively browse these large archives and retrieve content became a well-identified problem in Music Information Retrieval, namely through the adoption of audio content-based methodologies. Despite its robustness and effectiveness, current technological solutions rely mostly on (statistical) signal processing methods, whose terminology do attain a level of user-centered explanatory adequacy.This dissertation advances a novel semantically-oriented strategy for browsing and retrieving audio content, in particular, environmental sounds, from large web audio archives. Ultimately, we aim to streamline the retrieval of user-defined queries to foster a fluid generation of soundscapes. In our work, querying web audio archives is done by affective dimensions that relate to emotional states (e.g., low arousal and low valence) and semantic audio source descriptions (e.g., rain). To this end, we map human annotations of affective dimensions to spectral audio-content descriptions extracted from the signal content. Retrieving new sounds from web archives is then made by specifying a query which combines a point in a 2-dimensional affective plane and semantic tags. A prototype application, MScaper, implements the method in the Ableton Live environment. An evaluation of our research assesses the perceptual soundness of the spectral audio-content descriptors in capturing affective dimensions and the usability of MScaper. The results show that spectral audio features significantly capture affective dimensions and that MScaper has been perceived by expert-users as having excellent usability.
publishDate 2019
dc.date.none.fl_str_mv 2019-07-17
2019-07-17T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10216/121879
TID:202396363
url https://hdl.handle.net/10216/121879
identifier_str_mv TID:202396363
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136095801180160