Molecular modelling of chloride recognition and transmembrane transport by hydrazone-based synthetic receptors

Detalhes bibliográficos
Autor(a) principal: Soares, Márcio Miguel da Silva
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/32829
Resumo: The transport of ionic species across biological membranes, often mediated by embedded proteins, is vital for numerous biological processes. The slightest malfunction on this complex cellular cascade is associated with several channelopathies, such as cystic fibrosis, characterised by a deficient chloride transport through the cystic fibrosis transmembrane conductance regulator (CFTR) protein channel. Current treatments mainly focus on attenuating the diseases’ symptoms, instigating the need for alternative therapies, such as channel replacement therapies (CRTs), based on the development of synthetic receptors. However, the design of these small drug-like molecules is still not fully understood, as it depends on a perfect balance between the transporter’s binding affinity and lipophilicity. This work aimed to obtain theoretical insights into the anion chloride recognition and transport properties of thiourea-based acylhydrazones. As such, a family of thioureas functionalized with acylhydrazones and related functional groups undergone thorough experimental and computational studies. The receptors’ affinity for chloride was evaluated by DFT calculations while the interaction and the passive diffusion of receptors and their chloride complexes were investigated through molecular dynamics (MD) simulations based on classical force fields. The experimental chloride transport studies suggest that the additional binding motif has a detrimental effect of the transport ability of the thiourea-based receptors, as additional interactions between the secondary binding unit and the membrane phospholipids inhibit the anion transport. This hypothesis is strongly supported by the orientation of the transporters in the membrane and respective interactions, as observed MD simulations.
id RCAP_64b4e63687ba457766f88d3d3c06e530
oai_identifier_str oai:ria.ua.pt:10773/32829
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Molecular modelling of chloride recognition and transmembrane transport by hydrazone-based synthetic receptorsChannelopathiesCystic fibrosisSynthetic receptorsAnion transmembrane transportMolecular dynamics simulationsMolecular modellingAnion recognitionThe transport of ionic species across biological membranes, often mediated by embedded proteins, is vital for numerous biological processes. The slightest malfunction on this complex cellular cascade is associated with several channelopathies, such as cystic fibrosis, characterised by a deficient chloride transport through the cystic fibrosis transmembrane conductance regulator (CFTR) protein channel. Current treatments mainly focus on attenuating the diseases’ symptoms, instigating the need for alternative therapies, such as channel replacement therapies (CRTs), based on the development of synthetic receptors. However, the design of these small drug-like molecules is still not fully understood, as it depends on a perfect balance between the transporter’s binding affinity and lipophilicity. This work aimed to obtain theoretical insights into the anion chloride recognition and transport properties of thiourea-based acylhydrazones. As such, a family of thioureas functionalized with acylhydrazones and related functional groups undergone thorough experimental and computational studies. The receptors’ affinity for chloride was evaluated by DFT calculations while the interaction and the passive diffusion of receptors and their chloride complexes were investigated through molecular dynamics (MD) simulations based on classical force fields. The experimental chloride transport studies suggest that the additional binding motif has a detrimental effect of the transport ability of the thiourea-based receptors, as additional interactions between the secondary binding unit and the membrane phospholipids inhibit the anion transport. This hypothesis is strongly supported by the orientation of the transporters in the membrane and respective interactions, as observed MD simulations.O transporte de espécies iónicas através de membranas biológicas, frequentemente mediado por um conjunto complexo proteínas, é crucial em inúmeros processos fisiológicos. Posto isto, qualquer defeito nesta complexa cascata celular está associado a diversas canalopatias, como a fibrose quística, caracterizada pelo transporte deficiente de cloreto através do canal CFTR. Atualmente, o tratamento destas doenças foca-se principalmente na atenuação dos seus sintomas, fomentando a necessidade de terapias alternativas, como as terapias de substituição de canal No entanto, o design destes fármacos ainda não é inteiramente compreendido, uma vez que depende de um delicado equilíbrio entre a afinidade de ligação do transportador e a sua lipofilia. Este trabalho estudou o impacto da adição de um grupo funcional em transportadores aniónicos já caracterizados, com unidades de ligação comuns como N−Hs ácidos (ureias, tioureias ou esquaramidas). Assim sendo, uma família de tioureias funcionalizada com grupos acilhidrazona e derivados foi minuciosamente estudada experimental e computacionalmente. Os estudos teóricos reportados neste trabalho consistiram em cálculos quânticos e simulações de dinâmica molecular baseadas em campos de força clássicos. As análises ao transporte de cloreto sugerem que uma unidade de ligação adicional se traduz num efeito prejudicial na capacidade de transporte dos recetores derivados de tioureias, uma vez que interações adicionais entre a unidade de ligação secundária e os fosfolípidos da membrana impedem o transporte de aniões. Esta hipótese é suportada pelo estudo das orientações dos transportadores na membrana, bem como pelas suas interações, como observado nas simulações de dinâmica molecular.2022-01-07T14:17:30Z2021-12-02T00:00:00Z2021-12-02info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/32829engSoares, Márcio Miguel da Silvainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:03:16Zoai:ria.ua.pt:10773/32829Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:04:23.953644Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Molecular modelling of chloride recognition and transmembrane transport by hydrazone-based synthetic receptors
title Molecular modelling of chloride recognition and transmembrane transport by hydrazone-based synthetic receptors
spellingShingle Molecular modelling of chloride recognition and transmembrane transport by hydrazone-based synthetic receptors
Soares, Márcio Miguel da Silva
Channelopathies
Cystic fibrosis
Synthetic receptors
Anion transmembrane transport
Molecular dynamics simulations
Molecular modelling
Anion recognition
title_short Molecular modelling of chloride recognition and transmembrane transport by hydrazone-based synthetic receptors
title_full Molecular modelling of chloride recognition and transmembrane transport by hydrazone-based synthetic receptors
title_fullStr Molecular modelling of chloride recognition and transmembrane transport by hydrazone-based synthetic receptors
title_full_unstemmed Molecular modelling of chloride recognition and transmembrane transport by hydrazone-based synthetic receptors
title_sort Molecular modelling of chloride recognition and transmembrane transport by hydrazone-based synthetic receptors
author Soares, Márcio Miguel da Silva
author_facet Soares, Márcio Miguel da Silva
author_role author
dc.contributor.author.fl_str_mv Soares, Márcio Miguel da Silva
dc.subject.por.fl_str_mv Channelopathies
Cystic fibrosis
Synthetic receptors
Anion transmembrane transport
Molecular dynamics simulations
Molecular modelling
Anion recognition
topic Channelopathies
Cystic fibrosis
Synthetic receptors
Anion transmembrane transport
Molecular dynamics simulations
Molecular modelling
Anion recognition
description The transport of ionic species across biological membranes, often mediated by embedded proteins, is vital for numerous biological processes. The slightest malfunction on this complex cellular cascade is associated with several channelopathies, such as cystic fibrosis, characterised by a deficient chloride transport through the cystic fibrosis transmembrane conductance regulator (CFTR) protein channel. Current treatments mainly focus on attenuating the diseases’ symptoms, instigating the need for alternative therapies, such as channel replacement therapies (CRTs), based on the development of synthetic receptors. However, the design of these small drug-like molecules is still not fully understood, as it depends on a perfect balance between the transporter’s binding affinity and lipophilicity. This work aimed to obtain theoretical insights into the anion chloride recognition and transport properties of thiourea-based acylhydrazones. As such, a family of thioureas functionalized with acylhydrazones and related functional groups undergone thorough experimental and computational studies. The receptors’ affinity for chloride was evaluated by DFT calculations while the interaction and the passive diffusion of receptors and their chloride complexes were investigated through molecular dynamics (MD) simulations based on classical force fields. The experimental chloride transport studies suggest that the additional binding motif has a detrimental effect of the transport ability of the thiourea-based receptors, as additional interactions between the secondary binding unit and the membrane phospholipids inhibit the anion transport. This hypothesis is strongly supported by the orientation of the transporters in the membrane and respective interactions, as observed MD simulations.
publishDate 2021
dc.date.none.fl_str_mv 2021-12-02T00:00:00Z
2021-12-02
2022-01-07T14:17:30Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/32829
url http://hdl.handle.net/10773/32829
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137699553083392