Development of 3D-printed composite adsorbents for carbon dioxide capture from waste recovery
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/39599 |
Resumo: | This Master’s thesis focuses on the development of a 3D-printed composite adsorbent for capturing carbon dioxide (CO₂), a greenhouse gas contributing to global climate change. The research investigates the synergistic potential between biochar derived from chitosan and porous inorganic polymers incorporating red mud, a waste product of alumina production, to create a composite material with tailored textural properties using additive manufacturing techniques. Biochar, a carbonaceous material derived from the pyrolysis of waste materials and biomass, has shown promise as a CO₂ adsorbent due to its carbon sequestration properties and sustainable sourcing. In this study, the impact of different heating methods and pyrolysis temperatures on the characteristics and adsorption behavior of chitosan-derived biochar is investigated. The findings contribute to the understanding of biochar properties and the optimization of its performance as a CO₂ adsorbent. The biochar with superior CO₂ adsorption capacity was subsequently immobilized, obtaining a biochar/inorganic polymer composite in order to minimize the limitations associated with the use of adsorbents in powder form. An additional innovative aspect of this project is the utilization of additive manufacturing techniques that aims to fabricate the composite adsorbent with controlled pore morphology and increased open porosity. Finally, the synergistic effect of the immobilised biochar on the 3D-printed geopolymer was evaluated by determining the adsorption capacity and selectivity. The outcomes of this thesis contribute to the development of sustainable CO₂ capture technologies and offer novel approaches for effective carbon dioxide mitigation. |
id |
RCAP_64d1928da35db9c239cf9fffd680373f |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/39599 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Development of 3D-printed composite adsorbents for carbon dioxide capture from waste recoveryWaste recoveryPyrolysisBiocharInorganic polymersAdditive manufacturingAdsorptionCO₂ captureThis Master’s thesis focuses on the development of a 3D-printed composite adsorbent for capturing carbon dioxide (CO₂), a greenhouse gas contributing to global climate change. The research investigates the synergistic potential between biochar derived from chitosan and porous inorganic polymers incorporating red mud, a waste product of alumina production, to create a composite material with tailored textural properties using additive manufacturing techniques. Biochar, a carbonaceous material derived from the pyrolysis of waste materials and biomass, has shown promise as a CO₂ adsorbent due to its carbon sequestration properties and sustainable sourcing. In this study, the impact of different heating methods and pyrolysis temperatures on the characteristics and adsorption behavior of chitosan-derived biochar is investigated. The findings contribute to the understanding of biochar properties and the optimization of its performance as a CO₂ adsorbent. The biochar with superior CO₂ adsorption capacity was subsequently immobilized, obtaining a biochar/inorganic polymer composite in order to minimize the limitations associated with the use of adsorbents in powder form. An additional innovative aspect of this project is the utilization of additive manufacturing techniques that aims to fabricate the composite adsorbent with controlled pore morphology and increased open porosity. Finally, the synergistic effect of the immobilised biochar on the 3D-printed geopolymer was evaluated by determining the adsorption capacity and selectivity. The outcomes of this thesis contribute to the development of sustainable CO₂ capture technologies and offer novel approaches for effective carbon dioxide mitigation.Esta tese de mestrado centra-se no desenvolvimento de um adsorvente compósito impresso em 3D para a captura de dióxido de carbono (CO₂), um gás com efeito de estufa que contribui para as alterações climáticas globais. A tese investiga o potencial sinérgico entre o biocarvão derivado do quitosano e polímeros inorgânicos porosos incorporando lama vermelha, um produto residual da produção de alumina, para criar um material compósito com propriedades texturais customizadas utilizando técnicas de manufatura aditiva. O biocarvão, um material carbonáceo derivado da pirólise de resíduos e biomassa, tem-se revelado promissor como adsorvente de CO₂ devido às suas propriedades de fixação de carbono e ao seu fabrico sustentável. Neste estudo, é investigado o impacto de diferentes métodos de aquecimento e temperaturas de pirólise nas características e no comportamento de adsorção do biocarvão derivado do quitosano. Os resultados contribuem para a compreensão das propriedades do biocarvão e para a otimização do seu desempenho como adsorvente de CO₂. O biocarvão com capacidade de adsorção de CO₂ superior foi posteriormente imobilizado, obtendo-se um compósito biocarvão/polímero inorgânico com o objetivo de minimizar as limitações associadas à utilização de adsorventes na forma de pós. Um aspeto inovador adicional deste projeto é a utilização de técnicas de manufatura aditiva com o objetivo de fabricar o adsorvente compósito com morfologia de poros controlada e maior porosidade aberta. Finalmente, o efeito sinérgico do biocarvão imobilizado no geopolímero impresso em 3D foi avaliado através da determinação da capacidade de adsorção e selectividade. Os resultados desta tese contribuem para o desenvolvimento de tecnologias sustentáveis de captura de CO₂ e oferecem novas abordagens para a mitigação efetiva do dióxido de carbono.2025-07-21T00:00:00Z2023-07-12T00:00:00Z2023-07-12info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/39599engCorreia, Inês do Carmo Pedroinfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:17:21Zoai:ria.ua.pt:10773/39599Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:09:44.657707Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Development of 3D-printed composite adsorbents for carbon dioxide capture from waste recovery |
title |
Development of 3D-printed composite adsorbents for carbon dioxide capture from waste recovery |
spellingShingle |
Development of 3D-printed composite adsorbents for carbon dioxide capture from waste recovery Correia, Inês do Carmo Pedro Waste recovery Pyrolysis Biochar Inorganic polymers Additive manufacturing Adsorption CO₂ capture |
title_short |
Development of 3D-printed composite adsorbents for carbon dioxide capture from waste recovery |
title_full |
Development of 3D-printed composite adsorbents for carbon dioxide capture from waste recovery |
title_fullStr |
Development of 3D-printed composite adsorbents for carbon dioxide capture from waste recovery |
title_full_unstemmed |
Development of 3D-printed composite adsorbents for carbon dioxide capture from waste recovery |
title_sort |
Development of 3D-printed composite adsorbents for carbon dioxide capture from waste recovery |
author |
Correia, Inês do Carmo Pedro |
author_facet |
Correia, Inês do Carmo Pedro |
author_role |
author |
dc.contributor.author.fl_str_mv |
Correia, Inês do Carmo Pedro |
dc.subject.por.fl_str_mv |
Waste recovery Pyrolysis Biochar Inorganic polymers Additive manufacturing Adsorption CO₂ capture |
topic |
Waste recovery Pyrolysis Biochar Inorganic polymers Additive manufacturing Adsorption CO₂ capture |
description |
This Master’s thesis focuses on the development of a 3D-printed composite adsorbent for capturing carbon dioxide (CO₂), a greenhouse gas contributing to global climate change. The research investigates the synergistic potential between biochar derived from chitosan and porous inorganic polymers incorporating red mud, a waste product of alumina production, to create a composite material with tailored textural properties using additive manufacturing techniques. Biochar, a carbonaceous material derived from the pyrolysis of waste materials and biomass, has shown promise as a CO₂ adsorbent due to its carbon sequestration properties and sustainable sourcing. In this study, the impact of different heating methods and pyrolysis temperatures on the characteristics and adsorption behavior of chitosan-derived biochar is investigated. The findings contribute to the understanding of biochar properties and the optimization of its performance as a CO₂ adsorbent. The biochar with superior CO₂ adsorption capacity was subsequently immobilized, obtaining a biochar/inorganic polymer composite in order to minimize the limitations associated with the use of adsorbents in powder form. An additional innovative aspect of this project is the utilization of additive manufacturing techniques that aims to fabricate the composite adsorbent with controlled pore morphology and increased open porosity. Finally, the synergistic effect of the immobilised biochar on the 3D-printed geopolymer was evaluated by determining the adsorption capacity and selectivity. The outcomes of this thesis contribute to the development of sustainable CO₂ capture technologies and offer novel approaches for effective carbon dioxide mitigation. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-07-12T00:00:00Z 2023-07-12 2025-07-21T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/39599 |
url |
http://hdl.handle.net/10773/39599 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137747811696640 |