Optimization of Electricity Markets Participation with QPSO
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.22/10236 |
Resumo: | All around the world, the electric sector has suffered significant changes. With these alterations, electrical systems have become international, with several countries connected by a system where the management is done in common grounds. With the incorporation of large scale distributed generation, competitiveness in electrical markets has increased as small generators unite in order to be able to compete with large producers. In this game where the main objective is to win, and the premium is money it is necessary to be keen to be able to sell the available electricity at the best possible prices. With the objective of supporting players’ decisions, decision support tools play a crucial role. These tools enable market players with suggestions of actions to increase their advantage from market participation. This paper presents a Quantum-based Particle Swarm Optimization (QPSO) methodology to solve the problem of optimal participation in multiple electricity markets. |
id |
RCAP_659685d22921b23cd6ab0a0ac46e1331 |
---|---|
oai_identifier_str |
oai:recipp.ipp.pt:10400.22/10236 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Optimization of Electricity Markets Participation with QPSODecision SupportElectricity MarketsQuantum Particle Swarm OptimizationPortfolio OptimizationAll around the world, the electric sector has suffered significant changes. With these alterations, electrical systems have become international, with several countries connected by a system where the management is done in common grounds. With the incorporation of large scale distributed generation, competitiveness in electrical markets has increased as small generators unite in order to be able to compete with large producers. In this game where the main objective is to win, and the premium is money it is necessary to be keen to be able to sell the available electricity at the best possible prices. With the objective of supporting players’ decisions, decision support tools play a crucial role. These tools enable market players with suggestions of actions to increase their advantage from market participation. This paper presents a Quantum-based Particle Swarm Optimization (QPSO) methodology to solve the problem of optimal participation in multiple electricity markets.Institute of Electrical and Electronics EngineersRepositório Científico do Instituto Politécnico do PortoFaia, RicardoPinto, TiagoVale, Zita20162117-01-01T00:00:00Z2016-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/10236eng10.1109/EEM.2016.7521214metadata only accessinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T12:51:44Zoai:recipp.ipp.pt:10400.22/10236Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:30:40.575305Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Optimization of Electricity Markets Participation with QPSO |
title |
Optimization of Electricity Markets Participation with QPSO |
spellingShingle |
Optimization of Electricity Markets Participation with QPSO Faia, Ricardo Decision Support Electricity Markets Quantum Particle Swarm Optimization Portfolio Optimization |
title_short |
Optimization of Electricity Markets Participation with QPSO |
title_full |
Optimization of Electricity Markets Participation with QPSO |
title_fullStr |
Optimization of Electricity Markets Participation with QPSO |
title_full_unstemmed |
Optimization of Electricity Markets Participation with QPSO |
title_sort |
Optimization of Electricity Markets Participation with QPSO |
author |
Faia, Ricardo |
author_facet |
Faia, Ricardo Pinto, Tiago Vale, Zita |
author_role |
author |
author2 |
Pinto, Tiago Vale, Zita |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Repositório Científico do Instituto Politécnico do Porto |
dc.contributor.author.fl_str_mv |
Faia, Ricardo Pinto, Tiago Vale, Zita |
dc.subject.por.fl_str_mv |
Decision Support Electricity Markets Quantum Particle Swarm Optimization Portfolio Optimization |
topic |
Decision Support Electricity Markets Quantum Particle Swarm Optimization Portfolio Optimization |
description |
All around the world, the electric sector has suffered significant changes. With these alterations, electrical systems have become international, with several countries connected by a system where the management is done in common grounds. With the incorporation of large scale distributed generation, competitiveness in electrical markets has increased as small generators unite in order to be able to compete with large producers. In this game where the main objective is to win, and the premium is money it is necessary to be keen to be able to sell the available electricity at the best possible prices. With the objective of supporting players’ decisions, decision support tools play a crucial role. These tools enable market players with suggestions of actions to increase their advantage from market participation. This paper presents a Quantum-based Particle Swarm Optimization (QPSO) methodology to solve the problem of optimal participation in multiple electricity markets. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016 2016-01-01T00:00:00Z 2117-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.22/10236 |
url |
http://hdl.handle.net/10400.22/10236 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1109/EEM.2016.7521214 |
dc.rights.driver.fl_str_mv |
metadata only access info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
metadata only access |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131402535436288 |