Constructing ethanol-derived bioactive extracts using the brown seaweed Zonaria tournefortii (J.V.Lamouroux) Montagne performed with Timatic extractor by means of response surface methodology (RSM)
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.13/3139 |
Resumo: | Understanding the biochemical and antioxidant composition and capacity of a target biomass is the first step to its selectivity as functional food which can enhance the ability to promote health by reducing the risk of chronic diseases. The main purpose of this work was to employ response surface methodology (RSM) to determine the effect of the independent variables, % of ethanol (50–96%), time of sonication (0–20 min), and number of extraction cycles (6–18 cycles) in the primary extract of brown seaweed Zonaria tournefortii, studying the yield variation of some bioactive compounds, assessing the potential of these bioextracts to integrate as a natural additives or supplements in the functional food industry. The extractions were performed employing “Green Chemistry” techniques executed with the Timatic extractor, which applied pressurized ethanol solution at a maximum pressure of 8.5 bar through milled dehydrated biomass in the extraction vessel. Several parameters were assessed in the primary bioactive extract which included extract yield (11.56–28.49 g (100 g)−1 dw), total chlorophyll content (0.14–1.42 g (100 g)−1 dw), total carotenoid content (0.35–0.80 g (100 g)−1 dw), total fucoxanthin content (0.04–0.13 g (100 g)−1 dw), total phenolic content (3.58–5.84 g (100 g)−1 dw), total flavonoid content (0.22–4.70 g (100 g)−1 dw), DPPH (56.05–76.45%), and reducing activity (3.83–6.04 g (100 g)−1 dw). A second objective was to determine the suitability of the residue for subsequent extraction of valuable compounds such as fucoidan (4.87 to 6.59 g (100 g)−1 dw) and cellulose (18.88 to 20.27 g (100 g)−1 dw), implementing the first step to a biorefinery strategy, using a cascade approach. |
id |
RCAP_65f2200479dc3651bacb4b786e0d5b30 |
---|---|
oai_identifier_str |
oai:digituma.uma.pt:10400.13/3139 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Constructing ethanol-derived bioactive extracts using the brown seaweed Zonaria tournefortii (J.V.Lamouroux) Montagne performed with Timatic extractor by means of response surface methodology (RSM)Functional foodBioactive extractBiorefineryPhaeophyceaeFucoidan.Faculdade de Ciências da VidaUnderstanding the biochemical and antioxidant composition and capacity of a target biomass is the first step to its selectivity as functional food which can enhance the ability to promote health by reducing the risk of chronic diseases. The main purpose of this work was to employ response surface methodology (RSM) to determine the effect of the independent variables, % of ethanol (50–96%), time of sonication (0–20 min), and number of extraction cycles (6–18 cycles) in the primary extract of brown seaweed Zonaria tournefortii, studying the yield variation of some bioactive compounds, assessing the potential of these bioextracts to integrate as a natural additives or supplements in the functional food industry. The extractions were performed employing “Green Chemistry” techniques executed with the Timatic extractor, which applied pressurized ethanol solution at a maximum pressure of 8.5 bar through milled dehydrated biomass in the extraction vessel. Several parameters were assessed in the primary bioactive extract which included extract yield (11.56–28.49 g (100 g)−1 dw), total chlorophyll content (0.14–1.42 g (100 g)−1 dw), total carotenoid content (0.35–0.80 g (100 g)−1 dw), total fucoxanthin content (0.04–0.13 g (100 g)−1 dw), total phenolic content (3.58–5.84 g (100 g)−1 dw), total flavonoid content (0.22–4.70 g (100 g)−1 dw), DPPH (56.05–76.45%), and reducing activity (3.83–6.04 g (100 g)−1 dw). A second objective was to determine the suitability of the residue for subsequent extraction of valuable compounds such as fucoidan (4.87 to 6.59 g (100 g)−1 dw) and cellulose (18.88 to 20.27 g (100 g)−1 dw), implementing the first step to a biorefinery strategy, using a cascade approach.SpringerDigitUMaNunes, N.Valente, S.Ferraz, S.Barreto, Maria CarmoCarvalho, M.A.A. Pinheiro de2021-02-25T15:19:36Z20192019-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.13/3139engNunes, N., Valente, S., Ferraz, S., Barreto, M. C., & Carvalho, M. P. (2020). Constructing ethanol-derived bioactive extracts using the brown seaweed Zonaria tournefortii (JV Lamouroux) Montagne performed with Timatic extractor by means of response surface methodology (RSM). Journal of Applied Phycology, 32(4), 2321-2333. https://doi.org/10.1007/s10811-019-01973-910.1007/s10811-019-01973-9info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-26T03:38:55Zoai:digituma.uma.pt:10400.13/3139Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T15:05:59.463522Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Constructing ethanol-derived bioactive extracts using the brown seaweed Zonaria tournefortii (J.V.Lamouroux) Montagne performed with Timatic extractor by means of response surface methodology (RSM) |
title |
Constructing ethanol-derived bioactive extracts using the brown seaweed Zonaria tournefortii (J.V.Lamouroux) Montagne performed with Timatic extractor by means of response surface methodology (RSM) |
spellingShingle |
Constructing ethanol-derived bioactive extracts using the brown seaweed Zonaria tournefortii (J.V.Lamouroux) Montagne performed with Timatic extractor by means of response surface methodology (RSM) Nunes, N. Functional food Bioactive extract Biorefinery Phaeophyceae Fucoidan . Faculdade de Ciências da Vida |
title_short |
Constructing ethanol-derived bioactive extracts using the brown seaweed Zonaria tournefortii (J.V.Lamouroux) Montagne performed with Timatic extractor by means of response surface methodology (RSM) |
title_full |
Constructing ethanol-derived bioactive extracts using the brown seaweed Zonaria tournefortii (J.V.Lamouroux) Montagne performed with Timatic extractor by means of response surface methodology (RSM) |
title_fullStr |
Constructing ethanol-derived bioactive extracts using the brown seaweed Zonaria tournefortii (J.V.Lamouroux) Montagne performed with Timatic extractor by means of response surface methodology (RSM) |
title_full_unstemmed |
Constructing ethanol-derived bioactive extracts using the brown seaweed Zonaria tournefortii (J.V.Lamouroux) Montagne performed with Timatic extractor by means of response surface methodology (RSM) |
title_sort |
Constructing ethanol-derived bioactive extracts using the brown seaweed Zonaria tournefortii (J.V.Lamouroux) Montagne performed with Timatic extractor by means of response surface methodology (RSM) |
author |
Nunes, N. |
author_facet |
Nunes, N. Valente, S. Ferraz, S. Barreto, Maria Carmo Carvalho, M.A.A. Pinheiro de |
author_role |
author |
author2 |
Valente, S. Ferraz, S. Barreto, Maria Carmo Carvalho, M.A.A. Pinheiro de |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
DigitUMa |
dc.contributor.author.fl_str_mv |
Nunes, N. Valente, S. Ferraz, S. Barreto, Maria Carmo Carvalho, M.A.A. Pinheiro de |
dc.subject.por.fl_str_mv |
Functional food Bioactive extract Biorefinery Phaeophyceae Fucoidan . Faculdade de Ciências da Vida |
topic |
Functional food Bioactive extract Biorefinery Phaeophyceae Fucoidan . Faculdade de Ciências da Vida |
description |
Understanding the biochemical and antioxidant composition and capacity of a target biomass is the first step to its selectivity as functional food which can enhance the ability to promote health by reducing the risk of chronic diseases. The main purpose of this work was to employ response surface methodology (RSM) to determine the effect of the independent variables, % of ethanol (50–96%), time of sonication (0–20 min), and number of extraction cycles (6–18 cycles) in the primary extract of brown seaweed Zonaria tournefortii, studying the yield variation of some bioactive compounds, assessing the potential of these bioextracts to integrate as a natural additives or supplements in the functional food industry. The extractions were performed employing “Green Chemistry” techniques executed with the Timatic extractor, which applied pressurized ethanol solution at a maximum pressure of 8.5 bar through milled dehydrated biomass in the extraction vessel. Several parameters were assessed in the primary bioactive extract which included extract yield (11.56–28.49 g (100 g)−1 dw), total chlorophyll content (0.14–1.42 g (100 g)−1 dw), total carotenoid content (0.35–0.80 g (100 g)−1 dw), total fucoxanthin content (0.04–0.13 g (100 g)−1 dw), total phenolic content (3.58–5.84 g (100 g)−1 dw), total flavonoid content (0.22–4.70 g (100 g)−1 dw), DPPH (56.05–76.45%), and reducing activity (3.83–6.04 g (100 g)−1 dw). A second objective was to determine the suitability of the residue for subsequent extraction of valuable compounds such as fucoidan (4.87 to 6.59 g (100 g)−1 dw) and cellulose (18.88 to 20.27 g (100 g)−1 dw), implementing the first step to a biorefinery strategy, using a cascade approach. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019 2019-01-01T00:00:00Z 2021-02-25T15:19:36Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.13/3139 |
url |
http://hdl.handle.net/10400.13/3139 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Nunes, N., Valente, S., Ferraz, S., Barreto, M. C., & Carvalho, M. P. (2020). Constructing ethanol-derived bioactive extracts using the brown seaweed Zonaria tournefortii (JV Lamouroux) Montagne performed with Timatic extractor by means of response surface methodology (RSM). Journal of Applied Phycology, 32(4), 2321-2333. https://doi.org/10.1007/s10811-019-01973-9 10.1007/s10811-019-01973-9 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1817553743986556928 |