River sediment yield classification using remote sensing imagery
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , , , |
Tipo de documento: | Livro |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://repositorio-aberto.up.pt/handle/10216/102591 |
Resumo: | The monitoring of water quality is essencial to the mankind, since we strongly depend on such resource for living and working. The presence of sediments in rivers usually indicates changes in the land use, which can affect the quality of water and the lifetime of hydroelectric power plants. In countries like Brazil, where more than 70% of the energy comes from the water, it is crucial to keep monitoring the sediment yield in rivers and lakes. In this work, we evaluate some stateof- the-art supervised pattern recognition techniques to classify different levels of sediments in Brazilian rivers using satellite images, as well as we make available an annotated dataset composed of two images to foster the related research. |
id |
RCAP_66482a2c2c86529410d3975daa8ba4aa |
---|---|
oai_identifier_str |
oai:repositorio-aberto.up.pt:10216/102591 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
River sediment yield classification using remote sensing imageryCiências Tecnológicas, Ciências da engenharia e tecnologiasTechnological sciences, Engineering and technologyThe monitoring of water quality is essencial to the mankind, since we strongly depend on such resource for living and working. The presence of sediments in rivers usually indicates changes in the land use, which can affect the quality of water and the lifetime of hydroelectric power plants. In countries like Brazil, where more than 70% of the energy comes from the water, it is crucial to keep monitoring the sediment yield in rivers and lakes. In this work, we evaluate some stateof- the-art supervised pattern recognition techniques to classify different levels of sediments in Brazilian rivers using satellite images, as well as we make available an annotated dataset composed of two images to foster the related research.2017-032017-03-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookapplication/pdfhttps://repositorio-aberto.up.pt/handle/10216/102591eng10.1109/PRRS.2016.7867014R. PisaniK. CostaG. RosaD. PereiraJ. PapaJ. M. R. S. Tavaresinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T13:26:01Zoai:repositorio-aberto.up.pt:10216/102591Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T23:40:21.573173Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
River sediment yield classification using remote sensing imagery |
title |
River sediment yield classification using remote sensing imagery |
spellingShingle |
River sediment yield classification using remote sensing imagery R. Pisani Ciências Tecnológicas, Ciências da engenharia e tecnologias Technological sciences, Engineering and technology |
title_short |
River sediment yield classification using remote sensing imagery |
title_full |
River sediment yield classification using remote sensing imagery |
title_fullStr |
River sediment yield classification using remote sensing imagery |
title_full_unstemmed |
River sediment yield classification using remote sensing imagery |
title_sort |
River sediment yield classification using remote sensing imagery |
author |
R. Pisani |
author_facet |
R. Pisani K. Costa G. Rosa D. Pereira J. Papa J. M. R. S. Tavares |
author_role |
author |
author2 |
K. Costa G. Rosa D. Pereira J. Papa J. M. R. S. Tavares |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
R. Pisani K. Costa G. Rosa D. Pereira J. Papa J. M. R. S. Tavares |
dc.subject.por.fl_str_mv |
Ciências Tecnológicas, Ciências da engenharia e tecnologias Technological sciences, Engineering and technology |
topic |
Ciências Tecnológicas, Ciências da engenharia e tecnologias Technological sciences, Engineering and technology |
description |
The monitoring of water quality is essencial to the mankind, since we strongly depend on such resource for living and working. The presence of sediments in rivers usually indicates changes in the land use, which can affect the quality of water and the lifetime of hydroelectric power plants. In countries like Brazil, where more than 70% of the energy comes from the water, it is crucial to keep monitoring the sediment yield in rivers and lakes. In this work, we evaluate some stateof- the-art supervised pattern recognition techniques to classify different levels of sediments in Brazilian rivers using satellite images, as well as we make available an annotated dataset composed of two images to foster the related research. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-03 2017-03-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/book |
format |
book |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio-aberto.up.pt/handle/10216/102591 |
url |
https://repositorio-aberto.up.pt/handle/10216/102591 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1109/PRRS.2016.7867014 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799135718014976000 |