Cellulose nanorods in liquid crystalline elastomers for improved actuators

Detalhes bibliográficos
Autor(a) principal: Pontes, Rita Valério
Data de Publicação: 2014
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/14172
Resumo: Nanotechnology plays a central role in ‘tailoring’ materials’ properties and thus improving its performances for a wide range of applications. Coupling nature nano-objects with nanotechnology results in materials with enhanced functionalities. The main objective of this master thesis was the synthesis of nanocrystalline cellulose (NCCs) and its further incorporation in a cellulosic matrix, in order to produce a stimuli-responsive material to moisture. The induced behaviour (bending/unbending) of the samples was deeply investigated, in order to determine relationships between structure/properties. Using microcrystalline cellulose as a starting material, acid hydrolysis was performed and the NCC was obtained. Anisotropic aqueous solutions of HPC and NCC were prepared and films with thicknesses ranging from 22μm to 61μm were achieved, by using a shear casting technique. Microscopic and spectroscopic techniques as well as mechanical and rheological essays were used to characterize the transparent and flexible films produced. Upon the application of a stimulus (moisture), the bending/unbending response times were measured. The use of NCC allowed obtaining films with response times in the order of 6 seconds for the bending and 5 seconds for the unbending, improving the results previously reported. These promising results open new horizons for building up improved soft steam engines.
id RCAP_66583d3e22f25ada27f1215b94d2de6f
oai_identifier_str oai:run.unl.pt:10362/14172
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Cellulose nanorods in liquid crystalline elastomers for improved actuatorsCellulosePolymersNanocelluloseAll-cellulose compositesLiquid-crystalline elastomersStimuli-responsive materialsNanotechnology plays a central role in ‘tailoring’ materials’ properties and thus improving its performances for a wide range of applications. Coupling nature nano-objects with nanotechnology results in materials with enhanced functionalities. The main objective of this master thesis was the synthesis of nanocrystalline cellulose (NCCs) and its further incorporation in a cellulosic matrix, in order to produce a stimuli-responsive material to moisture. The induced behaviour (bending/unbending) of the samples was deeply investigated, in order to determine relationships between structure/properties. Using microcrystalline cellulose as a starting material, acid hydrolysis was performed and the NCC was obtained. Anisotropic aqueous solutions of HPC and NCC were prepared and films with thicknesses ranging from 22μm to 61μm were achieved, by using a shear casting technique. Microscopic and spectroscopic techniques as well as mechanical and rheological essays were used to characterize the transparent and flexible films produced. Upon the application of a stimulus (moisture), the bending/unbending response times were measured. The use of NCC allowed obtaining films with response times in the order of 6 seconds for the bending and 5 seconds for the unbending, improving the results previously reported. These promising results open new horizons for building up improved soft steam engines.Godinho, Maria HelenaFernandes, SuseteRUNPontes, Rita Valério2015-01-22T15:52:22Z2014-092015-012014-09-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/14172enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T03:49:12Zoai:run.unl.pt:10362/14172Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:21:39.608960Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Cellulose nanorods in liquid crystalline elastomers for improved actuators
title Cellulose nanorods in liquid crystalline elastomers for improved actuators
spellingShingle Cellulose nanorods in liquid crystalline elastomers for improved actuators
Pontes, Rita Valério
Cellulose
Polymers
Nanocellulose
All-cellulose composites
Liquid-crystalline elastomers
Stimuli-responsive materials
title_short Cellulose nanorods in liquid crystalline elastomers for improved actuators
title_full Cellulose nanorods in liquid crystalline elastomers for improved actuators
title_fullStr Cellulose nanorods in liquid crystalline elastomers for improved actuators
title_full_unstemmed Cellulose nanorods in liquid crystalline elastomers for improved actuators
title_sort Cellulose nanorods in liquid crystalline elastomers for improved actuators
author Pontes, Rita Valério
author_facet Pontes, Rita Valério
author_role author
dc.contributor.none.fl_str_mv Godinho, Maria Helena
Fernandes, Susete
RUN
dc.contributor.author.fl_str_mv Pontes, Rita Valério
dc.subject.por.fl_str_mv Cellulose
Polymers
Nanocellulose
All-cellulose composites
Liquid-crystalline elastomers
Stimuli-responsive materials
topic Cellulose
Polymers
Nanocellulose
All-cellulose composites
Liquid-crystalline elastomers
Stimuli-responsive materials
description Nanotechnology plays a central role in ‘tailoring’ materials’ properties and thus improving its performances for a wide range of applications. Coupling nature nano-objects with nanotechnology results in materials with enhanced functionalities. The main objective of this master thesis was the synthesis of nanocrystalline cellulose (NCCs) and its further incorporation in a cellulosic matrix, in order to produce a stimuli-responsive material to moisture. The induced behaviour (bending/unbending) of the samples was deeply investigated, in order to determine relationships between structure/properties. Using microcrystalline cellulose as a starting material, acid hydrolysis was performed and the NCC was obtained. Anisotropic aqueous solutions of HPC and NCC were prepared and films with thicknesses ranging from 22μm to 61μm were achieved, by using a shear casting technique. Microscopic and spectroscopic techniques as well as mechanical and rheological essays were used to characterize the transparent and flexible films produced. Upon the application of a stimulus (moisture), the bending/unbending response times were measured. The use of NCC allowed obtaining films with response times in the order of 6 seconds for the bending and 5 seconds for the unbending, improving the results previously reported. These promising results open new horizons for building up improved soft steam engines.
publishDate 2014
dc.date.none.fl_str_mv 2014-09
2014-09-01T00:00:00Z
2015-01-22T15:52:22Z
2015-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/14172
url http://hdl.handle.net/10362/14172
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137856892960768