On the Dedekind completion of function rings
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/43901 https://doi.org/10.1515/forum-2012-0095 |
Resumo: | This paper introduces the frame of partially defined real numbers and the lattice-ordered ring of partial real functions on a frame. This is then used to construct the order completion of rings of pointfree continuous real functions. The bounded and integer-valued cases are also analysed. The application of this pointfree approach to the classical case C(X) of the ring of continuous real-valued functions on a topological space X yields a new construction for the Dedekind completion of C(X), considerably more direct and natural than the known procedure using Hausdorff continuous functions. |
id |
RCAP_668168a775c8ea2f35179c7b81da90bf |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/43901 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
On the Dedekind completion of function ringsThis paper introduces the frame of partially defined real numbers and the lattice-ordered ring of partial real functions on a frame. This is then used to construct the order completion of rings of pointfree continuous real functions. The bounded and integer-valued cases are also analysed. The application of this pointfree approach to the classical case C(X) of the ring of continuous real-valued functions on a topological space X yields a new construction for the Dedekind completion of C(X), considerably more direct and natural than the known procedure using Hausdorff continuous functions.De Gruyter2015info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/43901http://hdl.handle.net/10316/43901https://doi.org/10.1515/forum-2012-0095https://doi.org/10.1515/forum-2012-0095enghttps://doi.org/10.1515/forum-2012-0095Mozo Carollo, ImanolGutiérrez García, JavierPicado, Jorgeinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2021-06-29T10:03:34Zoai:estudogeral.uc.pt:10316/43901Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:53:29.673561Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
On the Dedekind completion of function rings |
title |
On the Dedekind completion of function rings |
spellingShingle |
On the Dedekind completion of function rings Mozo Carollo, Imanol |
title_short |
On the Dedekind completion of function rings |
title_full |
On the Dedekind completion of function rings |
title_fullStr |
On the Dedekind completion of function rings |
title_full_unstemmed |
On the Dedekind completion of function rings |
title_sort |
On the Dedekind completion of function rings |
author |
Mozo Carollo, Imanol |
author_facet |
Mozo Carollo, Imanol Gutiérrez García, Javier Picado, Jorge |
author_role |
author |
author2 |
Gutiérrez García, Javier Picado, Jorge |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Mozo Carollo, Imanol Gutiérrez García, Javier Picado, Jorge |
description |
This paper introduces the frame of partially defined real numbers and the lattice-ordered ring of partial real functions on a frame. This is then used to construct the order completion of rings of pointfree continuous real functions. The bounded and integer-valued cases are also analysed. The application of this pointfree approach to the classical case C(X) of the ring of continuous real-valued functions on a topological space X yields a new construction for the Dedekind completion of C(X), considerably more direct and natural than the known procedure using Hausdorff continuous functions. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/43901 http://hdl.handle.net/10316/43901 https://doi.org/10.1515/forum-2012-0095 https://doi.org/10.1515/forum-2012-0095 |
url |
http://hdl.handle.net/10316/43901 https://doi.org/10.1515/forum-2012-0095 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://doi.org/10.1515/forum-2012-0095 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
De Gruyter |
publisher.none.fl_str_mv |
De Gruyter |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133821606559744 |