Species-specific plastic accumulation in the sediment and canopy of coastal vegetated habitats

Detalhes bibliográficos
Autor(a) principal: R Nicastro, Katy
Data de Publicação: 2020
Outros Autores: Zardi, Gerardo I., de los Santos, Carmen B.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.1/14730
Resumo: Plastic waste has become ubiquitous in ecosystems worldwide. Few, recent studies report evidence of coastal vegetated habitats acting as sink for plastics, yet assessments have been completed either for macro or microplastics and focussing on just one type of vegetated habitat. Here, we investigated the role of marine coastal vegetated habitats as sinks for macro (≥5 mm) and microplastics (<5 mm) through a comprehensive, multi-habitat approach. We assessed the occurrence, abundance and physical properties of macro and microplastics in the canopy and superficial sediment of two intertidal (seagrass Zostera noltei, saltmarsh Sporobolus maritimus) and two subtidal (mixed seagrass meadows of Cymodocea nodosa and Zostera marina, rhizophytic macroalga Caulerpa prolifera) habitats in the Ria Formosa lagoon (Portugal). Our results showed that coastal vegetated habitats trapped macro and microplastics in the sediment at variable degrees (1.3-17.3 macroplastics 100 m-2, and 18.2-35.2 microplastics kg-1). Macroplastics accumulated in all vegetated habitat but not in nearby unvegetated areas, yet only S. maritimus habitat presented a significant trapping effect. Microplastics occurred in the sediment of all vegetated and unvegetated areas with similar abundances and high variability. Microplastics, all of type fibre, were recorded on all canopies except for S. maritimus. Overall, the trapping capacity of microplastics in the sediment and on the canopy was higher for subtidal than for intertidal vegetated habitats. We conclude that generalizations in the trapping effect of coastal vegetated areas should be done with caution, since it may be highly variable and may depend on the plastic size, habitat and tidal position. Since these habitats support a high biodiversity, they should be included in assessments of plastic debris accumulation and impacts in coastal areas. Further research, including experimental studies, is needed to shed more light on the role of coastal vegetated habitats as plastic sinks.
id RCAP_66e794315c6099b350db7fc870e8c80e
oai_identifier_str oai:sapientia.ualg.pt:10400.1/14730
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Species-specific plastic accumulation in the sediment and canopy of coastal vegetated habitatsEnvironmental monitoringGeologic sedimentsPortugalTaiwanEcosystemPlasticsPlastic waste has become ubiquitous in ecosystems worldwide. Few, recent studies report evidence of coastal vegetated habitats acting as sink for plastics, yet assessments have been completed either for macro or microplastics and focussing on just one type of vegetated habitat. Here, we investigated the role of marine coastal vegetated habitats as sinks for macro (≥5 mm) and microplastics (<5 mm) through a comprehensive, multi-habitat approach. We assessed the occurrence, abundance and physical properties of macro and microplastics in the canopy and superficial sediment of two intertidal (seagrass Zostera noltei, saltmarsh Sporobolus maritimus) and two subtidal (mixed seagrass meadows of Cymodocea nodosa and Zostera marina, rhizophytic macroalga Caulerpa prolifera) habitats in the Ria Formosa lagoon (Portugal). Our results showed that coastal vegetated habitats trapped macro and microplastics in the sediment at variable degrees (1.3-17.3 macroplastics 100 m-2, and 18.2-35.2 microplastics kg-1). Macroplastics accumulated in all vegetated habitat but not in nearby unvegetated areas, yet only S. maritimus habitat presented a significant trapping effect. Microplastics occurred in the sediment of all vegetated and unvegetated areas with similar abundances and high variability. Microplastics, all of type fibre, were recorded on all canopies except for S. maritimus. Overall, the trapping capacity of microplastics in the sediment and on the canopy was higher for subtidal than for intertidal vegetated habitats. We conclude that generalizations in the trapping effect of coastal vegetated areas should be done with caution, since it may be highly variable and may depend on the plastic size, habitat and tidal position. Since these habitats support a high biodiversity, they should be included in assessments of plastic debris accumulation and impacts in coastal areas. Further research, including experimental studies, is needed to shed more light on the role of coastal vegetated habitats as plastic sinks.UIDB/04326/2020, IF/01413/2014/CP1217/CT0004, SFRH/BPD/119344/2016ElsevierSapientiaR Nicastro, KatyZardi, Gerardo I.de los Santos, Carmen B.2022-06-02T00:30:16Z2020-062020-06-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.1/14730eng0048-969710.1016/j.scitotenv.2020.138018info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-24T10:27:04Zoai:sapientia.ualg.pt:10400.1/14730Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:05:43.136129Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Species-specific plastic accumulation in the sediment and canopy of coastal vegetated habitats
title Species-specific plastic accumulation in the sediment and canopy of coastal vegetated habitats
spellingShingle Species-specific plastic accumulation in the sediment and canopy of coastal vegetated habitats
R Nicastro, Katy
Environmental monitoring
Geologic sediments
Portugal
Taiwan
Ecosystem
Plastics
title_short Species-specific plastic accumulation in the sediment and canopy of coastal vegetated habitats
title_full Species-specific plastic accumulation in the sediment and canopy of coastal vegetated habitats
title_fullStr Species-specific plastic accumulation in the sediment and canopy of coastal vegetated habitats
title_full_unstemmed Species-specific plastic accumulation in the sediment and canopy of coastal vegetated habitats
title_sort Species-specific plastic accumulation in the sediment and canopy of coastal vegetated habitats
author R Nicastro, Katy
author_facet R Nicastro, Katy
Zardi, Gerardo I.
de los Santos, Carmen B.
author_role author
author2 Zardi, Gerardo I.
de los Santos, Carmen B.
author2_role author
author
dc.contributor.none.fl_str_mv Sapientia
dc.contributor.author.fl_str_mv R Nicastro, Katy
Zardi, Gerardo I.
de los Santos, Carmen B.
dc.subject.por.fl_str_mv Environmental monitoring
Geologic sediments
Portugal
Taiwan
Ecosystem
Plastics
topic Environmental monitoring
Geologic sediments
Portugal
Taiwan
Ecosystem
Plastics
description Plastic waste has become ubiquitous in ecosystems worldwide. Few, recent studies report evidence of coastal vegetated habitats acting as sink for plastics, yet assessments have been completed either for macro or microplastics and focussing on just one type of vegetated habitat. Here, we investigated the role of marine coastal vegetated habitats as sinks for macro (≥5 mm) and microplastics (<5 mm) through a comprehensive, multi-habitat approach. We assessed the occurrence, abundance and physical properties of macro and microplastics in the canopy and superficial sediment of two intertidal (seagrass Zostera noltei, saltmarsh Sporobolus maritimus) and two subtidal (mixed seagrass meadows of Cymodocea nodosa and Zostera marina, rhizophytic macroalga Caulerpa prolifera) habitats in the Ria Formosa lagoon (Portugal). Our results showed that coastal vegetated habitats trapped macro and microplastics in the sediment at variable degrees (1.3-17.3 macroplastics 100 m-2, and 18.2-35.2 microplastics kg-1). Macroplastics accumulated in all vegetated habitat but not in nearby unvegetated areas, yet only S. maritimus habitat presented a significant trapping effect. Microplastics occurred in the sediment of all vegetated and unvegetated areas with similar abundances and high variability. Microplastics, all of type fibre, were recorded on all canopies except for S. maritimus. Overall, the trapping capacity of microplastics in the sediment and on the canopy was higher for subtidal than for intertidal vegetated habitats. We conclude that generalizations in the trapping effect of coastal vegetated areas should be done with caution, since it may be highly variable and may depend on the plastic size, habitat and tidal position. Since these habitats support a high biodiversity, they should be included in assessments of plastic debris accumulation and impacts in coastal areas. Further research, including experimental studies, is needed to shed more light on the role of coastal vegetated habitats as plastic sinks.
publishDate 2020
dc.date.none.fl_str_mv 2020-06
2020-06-01T00:00:00Z
2022-06-02T00:30:16Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.1/14730
url http://hdl.handle.net/10400.1/14730
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0048-9697
10.1016/j.scitotenv.2020.138018
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133296952606720