Lactic acid bacteria isolated from traditional and innovative alheiras as potential biocontrol agents
Autor(a) principal: | |
---|---|
Data de Publicação: | 2024 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.14/43466 |
Resumo: | From a selection of seven traditional and 14 innovative alheiras, 491 lactic acid bacteria (LAB) were isolated and tested for their antimicrobial activity against several food-borne pathogens. Among these, six strains revealed antimicrobial activity through potential bacteriocin production against 14 Listeria monocytogenes strains, Enterococcus faecalis ATCC 29212, Clostridium sporogenes ESB050, and Clostridium perfringens ESB054. Through whole genome sequencing (WGS), these strains were identified as Lactiplantibacillus plantarum (2), Leuconostoc mesenteroides (1), and Pediococcus acidilactici (3). Furthermore, several orthologues of class II bacteriocins genes were identified, including Plantaricin E, Plantaricin F, Pediocin PA, Enterocin X, Leucocin A, and Coagulin A. No virulence or antibiotic resistance genes’ orthologues were detected by WGS analysis. However, the selected LAB strains showed variable phenotypic patterns related to virulence genes and antibiotic resistance when assessed through classical methodologies. None of these strains demonstrated the production of biogenic amines, gelatinase or DNase. Additionally, no hemolytic activity or lipase enzyme production was observed. However, only Lpb. plantarum 9A3 was sensitive to all tested antibiotics and was thus chosen for further examination. The bacteriocins produced by Lpb. plantarum (9A3) exhibited stability across a broad range of conditions, including temperatures from 4 to 100 °C, pH values ranging from 2 to 8, exposure to surfactants and detergents (Tween 20 and 80, SDS, EDTA 0.1, 2 and 5 mM, urea and sodium deoxycholate), and enzymes (papain and catalase). Their maximum activity (AU/mL = 12,800) against four L. monocytogenes strains was observed between 21 and 36 h of growth of Lbp. plantarum 9A3, indicating a bacteriostatic mode of action. Therefore, this strain appears to be a robust candidate for potential application as a protective strain to be used in the food industry. Not only is it safe, but it also produces stable bacteriocins (harbouring genes encoding for the production of three) effectively inhibiting significant pathogens such as L. monocytogenes and C. perfringens. |
id |
RCAP_67370bc903cfd046e7ade4744c467f92 |
---|---|
oai_identifier_str |
oai:repositorio.ucp.pt:10400.14/43466 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Lactic acid bacteria isolated from traditional and innovative alheiras as potential biocontrol agentsBacteriocin producersFermented foodsInnovative productsLactiplantibacillus plantarumFrom a selection of seven traditional and 14 innovative alheiras, 491 lactic acid bacteria (LAB) were isolated and tested for their antimicrobial activity against several food-borne pathogens. Among these, six strains revealed antimicrobial activity through potential bacteriocin production against 14 Listeria monocytogenes strains, Enterococcus faecalis ATCC 29212, Clostridium sporogenes ESB050, and Clostridium perfringens ESB054. Through whole genome sequencing (WGS), these strains were identified as Lactiplantibacillus plantarum (2), Leuconostoc mesenteroides (1), and Pediococcus acidilactici (3). Furthermore, several orthologues of class II bacteriocins genes were identified, including Plantaricin E, Plantaricin F, Pediocin PA, Enterocin X, Leucocin A, and Coagulin A. No virulence or antibiotic resistance genes’ orthologues were detected by WGS analysis. However, the selected LAB strains showed variable phenotypic patterns related to virulence genes and antibiotic resistance when assessed through classical methodologies. None of these strains demonstrated the production of biogenic amines, gelatinase or DNase. Additionally, no hemolytic activity or lipase enzyme production was observed. However, only Lpb. plantarum 9A3 was sensitive to all tested antibiotics and was thus chosen for further examination. The bacteriocins produced by Lpb. plantarum (9A3) exhibited stability across a broad range of conditions, including temperatures from 4 to 100 °C, pH values ranging from 2 to 8, exposure to surfactants and detergents (Tween 20 and 80, SDS, EDTA 0.1, 2 and 5 mM, urea and sodium deoxycholate), and enzymes (papain and catalase). Their maximum activity (AU/mL = 12,800) against four L. monocytogenes strains was observed between 21 and 36 h of growth of Lbp. plantarum 9A3, indicating a bacteriostatic mode of action. Therefore, this strain appears to be a robust candidate for potential application as a protective strain to be used in the food industry. Not only is it safe, but it also produces stable bacteriocins (harbouring genes encoding for the production of three) effectively inhibiting significant pathogens such as L. monocytogenes and C. perfringens.Veritati - Repositório Institucional da Universidade Católica PortuguesaAzevedo, InêsBarbosa, JoanaAlbano, HelenaNogueira, TeresaTeixeira, Paula2024-01-03T16:28:54Z2024-052024-05-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.14/43466eng0740-002010.1016/j.fm.2023.1044508518061325438225051001147296500001info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-13T01:33:41Zoai:repositorio.ucp.pt:10400.14/43466Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:30:52.024989Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Lactic acid bacteria isolated from traditional and innovative alheiras as potential biocontrol agents |
title |
Lactic acid bacteria isolated from traditional and innovative alheiras as potential biocontrol agents |
spellingShingle |
Lactic acid bacteria isolated from traditional and innovative alheiras as potential biocontrol agents Azevedo, Inês Bacteriocin producers Fermented foods Innovative products Lactiplantibacillus plantarum |
title_short |
Lactic acid bacteria isolated from traditional and innovative alheiras as potential biocontrol agents |
title_full |
Lactic acid bacteria isolated from traditional and innovative alheiras as potential biocontrol agents |
title_fullStr |
Lactic acid bacteria isolated from traditional and innovative alheiras as potential biocontrol agents |
title_full_unstemmed |
Lactic acid bacteria isolated from traditional and innovative alheiras as potential biocontrol agents |
title_sort |
Lactic acid bacteria isolated from traditional and innovative alheiras as potential biocontrol agents |
author |
Azevedo, Inês |
author_facet |
Azevedo, Inês Barbosa, Joana Albano, Helena Nogueira, Teresa Teixeira, Paula |
author_role |
author |
author2 |
Barbosa, Joana Albano, Helena Nogueira, Teresa Teixeira, Paula |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Veritati - Repositório Institucional da Universidade Católica Portuguesa |
dc.contributor.author.fl_str_mv |
Azevedo, Inês Barbosa, Joana Albano, Helena Nogueira, Teresa Teixeira, Paula |
dc.subject.por.fl_str_mv |
Bacteriocin producers Fermented foods Innovative products Lactiplantibacillus plantarum |
topic |
Bacteriocin producers Fermented foods Innovative products Lactiplantibacillus plantarum |
description |
From a selection of seven traditional and 14 innovative alheiras, 491 lactic acid bacteria (LAB) were isolated and tested for their antimicrobial activity against several food-borne pathogens. Among these, six strains revealed antimicrobial activity through potential bacteriocin production against 14 Listeria monocytogenes strains, Enterococcus faecalis ATCC 29212, Clostridium sporogenes ESB050, and Clostridium perfringens ESB054. Through whole genome sequencing (WGS), these strains were identified as Lactiplantibacillus plantarum (2), Leuconostoc mesenteroides (1), and Pediococcus acidilactici (3). Furthermore, several orthologues of class II bacteriocins genes were identified, including Plantaricin E, Plantaricin F, Pediocin PA, Enterocin X, Leucocin A, and Coagulin A. No virulence or antibiotic resistance genes’ orthologues were detected by WGS analysis. However, the selected LAB strains showed variable phenotypic patterns related to virulence genes and antibiotic resistance when assessed through classical methodologies. None of these strains demonstrated the production of biogenic amines, gelatinase or DNase. Additionally, no hemolytic activity or lipase enzyme production was observed. However, only Lpb. plantarum 9A3 was sensitive to all tested antibiotics and was thus chosen for further examination. The bacteriocins produced by Lpb. plantarum (9A3) exhibited stability across a broad range of conditions, including temperatures from 4 to 100 °C, pH values ranging from 2 to 8, exposure to surfactants and detergents (Tween 20 and 80, SDS, EDTA 0.1, 2 and 5 mM, urea and sodium deoxycholate), and enzymes (papain and catalase). Their maximum activity (AU/mL = 12,800) against four L. monocytogenes strains was observed between 21 and 36 h of growth of Lbp. plantarum 9A3, indicating a bacteriostatic mode of action. Therefore, this strain appears to be a robust candidate for potential application as a protective strain to be used in the food industry. Not only is it safe, but it also produces stable bacteriocins (harbouring genes encoding for the production of three) effectively inhibiting significant pathogens such as L. monocytogenes and C. perfringens. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-01-03T16:28:54Z 2024-05 2024-05-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.14/43466 |
url |
http://hdl.handle.net/10400.14/43466 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0740-0020 10.1016/j.fm.2023.104450 85180613254 38225051 001147296500001 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136790419865600 |