Lactic acid bacteria isolated from traditional and innovative alheiras as potential biocontrol agents

Detalhes bibliográficos
Autor(a) principal: Azevedo, Inês
Data de Publicação: 2024
Outros Autores: Barbosa, Joana, Albano, Helena, Nogueira, Teresa, Teixeira, Paula
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.14/43466
Resumo: From a selection of seven traditional and 14 innovative alheiras, 491 lactic acid bacteria (LAB) were isolated and tested for their antimicrobial activity against several food-borne pathogens. Among these, six strains revealed antimicrobial activity through potential bacteriocin production against 14 Listeria monocytogenes strains, Enterococcus faecalis ATCC 29212, Clostridium sporogenes ESB050, and Clostridium perfringens ESB054. Through whole genome sequencing (WGS), these strains were identified as Lactiplantibacillus plantarum (2), Leuconostoc mesenteroides (1), and Pediococcus acidilactici (3). Furthermore, several orthologues of class II bacteriocins genes were identified, including Plantaricin E, Plantaricin F, Pediocin PA, Enterocin X, Leucocin A, and Coagulin A. No virulence or antibiotic resistance genes’ orthologues were detected by WGS analysis. However, the selected LAB strains showed variable phenotypic patterns related to virulence genes and antibiotic resistance when assessed through classical methodologies. None of these strains demonstrated the production of biogenic amines, gelatinase or DNase. Additionally, no hemolytic activity or lipase enzyme production was observed. However, only Lpb. plantarum 9A3 was sensitive to all tested antibiotics and was thus chosen for further examination. The bacteriocins produced by Lpb. plantarum (9A3) exhibited stability across a broad range of conditions, including temperatures from 4 to 100 °C, pH values ranging from 2 to 8, exposure to surfactants and detergents (Tween 20 and 80, SDS, EDTA 0.1, 2 and 5 mM, urea and sodium deoxycholate), and enzymes (papain and catalase). Their maximum activity (AU/mL = 12,800) against four L. monocytogenes strains was observed between 21 and 36 h of growth of Lbp. plantarum 9A3, indicating a bacteriostatic mode of action. Therefore, this strain appears to be a robust candidate for potential application as a protective strain to be used in the food industry. Not only is it safe, but it also produces stable bacteriocins (harbouring genes encoding for the production of three) effectively inhibiting significant pathogens such as L. monocytogenes and C. perfringens.
id RCAP_67370bc903cfd046e7ade4744c467f92
oai_identifier_str oai:repositorio.ucp.pt:10400.14/43466
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Lactic acid bacteria isolated from traditional and innovative alheiras as potential biocontrol agentsBacteriocin producersFermented foodsInnovative productsLactiplantibacillus plantarumFrom a selection of seven traditional and 14 innovative alheiras, 491 lactic acid bacteria (LAB) were isolated and tested for their antimicrobial activity against several food-borne pathogens. Among these, six strains revealed antimicrobial activity through potential bacteriocin production against 14 Listeria monocytogenes strains, Enterococcus faecalis ATCC 29212, Clostridium sporogenes ESB050, and Clostridium perfringens ESB054. Through whole genome sequencing (WGS), these strains were identified as Lactiplantibacillus plantarum (2), Leuconostoc mesenteroides (1), and Pediococcus acidilactici (3). Furthermore, several orthologues of class II bacteriocins genes were identified, including Plantaricin E, Plantaricin F, Pediocin PA, Enterocin X, Leucocin A, and Coagulin A. No virulence or antibiotic resistance genes’ orthologues were detected by WGS analysis. However, the selected LAB strains showed variable phenotypic patterns related to virulence genes and antibiotic resistance when assessed through classical methodologies. None of these strains demonstrated the production of biogenic amines, gelatinase or DNase. Additionally, no hemolytic activity or lipase enzyme production was observed. However, only Lpb. plantarum 9A3 was sensitive to all tested antibiotics and was thus chosen for further examination. The bacteriocins produced by Lpb. plantarum (9A3) exhibited stability across a broad range of conditions, including temperatures from 4 to 100 °C, pH values ranging from 2 to 8, exposure to surfactants and detergents (Tween 20 and 80, SDS, EDTA 0.1, 2 and 5 mM, urea and sodium deoxycholate), and enzymes (papain and catalase). Their maximum activity (AU/mL = 12,800) against four L. monocytogenes strains was observed between 21 and 36 h of growth of Lbp. plantarum 9A3, indicating a bacteriostatic mode of action. Therefore, this strain appears to be a robust candidate for potential application as a protective strain to be used in the food industry. Not only is it safe, but it also produces stable bacteriocins (harbouring genes encoding for the production of three) effectively inhibiting significant pathogens such as L. monocytogenes and C. perfringens.Veritati - Repositório Institucional da Universidade Católica PortuguesaAzevedo, InêsBarbosa, JoanaAlbano, HelenaNogueira, TeresaTeixeira, Paula2024-01-03T16:28:54Z2024-052024-05-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.14/43466eng0740-002010.1016/j.fm.2023.1044508518061325438225051001147296500001info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-13T01:33:41Zoai:repositorio.ucp.pt:10400.14/43466Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:30:52.024989Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Lactic acid bacteria isolated from traditional and innovative alheiras as potential biocontrol agents
title Lactic acid bacteria isolated from traditional and innovative alheiras as potential biocontrol agents
spellingShingle Lactic acid bacteria isolated from traditional and innovative alheiras as potential biocontrol agents
Azevedo, Inês
Bacteriocin producers
Fermented foods
Innovative products
Lactiplantibacillus plantarum
title_short Lactic acid bacteria isolated from traditional and innovative alheiras as potential biocontrol agents
title_full Lactic acid bacteria isolated from traditional and innovative alheiras as potential biocontrol agents
title_fullStr Lactic acid bacteria isolated from traditional and innovative alheiras as potential biocontrol agents
title_full_unstemmed Lactic acid bacteria isolated from traditional and innovative alheiras as potential biocontrol agents
title_sort Lactic acid bacteria isolated from traditional and innovative alheiras as potential biocontrol agents
author Azevedo, Inês
author_facet Azevedo, Inês
Barbosa, Joana
Albano, Helena
Nogueira, Teresa
Teixeira, Paula
author_role author
author2 Barbosa, Joana
Albano, Helena
Nogueira, Teresa
Teixeira, Paula
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Veritati - Repositório Institucional da Universidade Católica Portuguesa
dc.contributor.author.fl_str_mv Azevedo, Inês
Barbosa, Joana
Albano, Helena
Nogueira, Teresa
Teixeira, Paula
dc.subject.por.fl_str_mv Bacteriocin producers
Fermented foods
Innovative products
Lactiplantibacillus plantarum
topic Bacteriocin producers
Fermented foods
Innovative products
Lactiplantibacillus plantarum
description From a selection of seven traditional and 14 innovative alheiras, 491 lactic acid bacteria (LAB) were isolated and tested for their antimicrobial activity against several food-borne pathogens. Among these, six strains revealed antimicrobial activity through potential bacteriocin production against 14 Listeria monocytogenes strains, Enterococcus faecalis ATCC 29212, Clostridium sporogenes ESB050, and Clostridium perfringens ESB054. Through whole genome sequencing (WGS), these strains were identified as Lactiplantibacillus plantarum (2), Leuconostoc mesenteroides (1), and Pediococcus acidilactici (3). Furthermore, several orthologues of class II bacteriocins genes were identified, including Plantaricin E, Plantaricin F, Pediocin PA, Enterocin X, Leucocin A, and Coagulin A. No virulence or antibiotic resistance genes’ orthologues were detected by WGS analysis. However, the selected LAB strains showed variable phenotypic patterns related to virulence genes and antibiotic resistance when assessed through classical methodologies. None of these strains demonstrated the production of biogenic amines, gelatinase or DNase. Additionally, no hemolytic activity or lipase enzyme production was observed. However, only Lpb. plantarum 9A3 was sensitive to all tested antibiotics and was thus chosen for further examination. The bacteriocins produced by Lpb. plantarum (9A3) exhibited stability across a broad range of conditions, including temperatures from 4 to 100 °C, pH values ranging from 2 to 8, exposure to surfactants and detergents (Tween 20 and 80, SDS, EDTA 0.1, 2 and 5 mM, urea and sodium deoxycholate), and enzymes (papain and catalase). Their maximum activity (AU/mL = 12,800) against four L. monocytogenes strains was observed between 21 and 36 h of growth of Lbp. plantarum 9A3, indicating a bacteriostatic mode of action. Therefore, this strain appears to be a robust candidate for potential application as a protective strain to be used in the food industry. Not only is it safe, but it also produces stable bacteriocins (harbouring genes encoding for the production of three) effectively inhibiting significant pathogens such as L. monocytogenes and C. perfringens.
publishDate 2024
dc.date.none.fl_str_mv 2024-01-03T16:28:54Z
2024-05
2024-05-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.14/43466
url http://hdl.handle.net/10400.14/43466
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0740-0020
10.1016/j.fm.2023.104450
85180613254
38225051
001147296500001
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136790419865600