Conformational Studies of Poly(9,9-dialkylfluorene)s in Solution Using NMR Spectroscopy and Density Functional Theory Calculations

Detalhes bibliográficos
Autor(a) principal: Justino, Licínia L. G.
Data de Publicação: 2009
Outros Autores: Ramos, M. Luísa, Abreu, Paulo E., Carvalho, Rui A., Sobral, Abílio J. F. N., Scherf, Ullrich, Burrows, Hugh D.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/11256
https://doi.org/10.1021/jp902666e
Resumo: Relationships have been obtained between intermonomer torsional angle and NMR chemical shifts (1H and 13C) for isolated chains of two of the most important poly(9,9-dialkylfluorenes), poly[9,9-bis(2-ethylhexyl)fluorene-2,7-diyl] (PF2/6) and the copolymer poly(9,9-dioctylfluorene-co-[2,1,3]benzothiadiazole-4,7-diyl) (F8BT), using DFT calculations. The correlations provide a model for NMR spectral data interpretation and the basis for analysis of conformational changes in poly(9,9-dialkylfluorene-2,7-diyl)s. The correlations obtained for PF2/6 indicate that the 13C chemical shifts of the aromatic carbons close to the intermonomer connection (C1, C2, and C3) have minimum values at planar conformations (0° and 180°) and maximum values at 90° conformations. In contrast, the 1H chemical shifts of the corresponding aromatic ortho protons (Ha and Hb) are greatest for planar conformations, and the minimum values are seen for 90° conformations. For the F8BT copolymer, similar relationships are observed for the 1H (Ha, Hb, and Hc) aromatic shifts. Considering the aromatic carbons of F8BT, the behavior of C2, C4, C5, and C6 is similar to that found for the PF2/6 carbons. However, C1 and C3 of the fluorene moiety behave differently with varying torsion angle. These are in close proximity to the fluorene−benzothiadiazole linkage and are markedly affected by interactions with the thiadiazole unit such that δC1 is a maximum for 180° and a minimum for 0°, whereas δC3 is a maximum for 0° and minimum for 180°. We have studied the 1H and 13C spectra of the two polymers at temperatures between −50 °C and +65 °C. The observed changes to higher or lower frequency in the aromatic resonances were analyzed using these theoretical relationships. Fluorescence studies on PF2/6 in chloroform solution suggest there are no significant interchain interactions under these conditions. This is supported by variable-temperature NMR results. Polymer−solvent and polymer intramolecular interactions were found to be present and influence all of the alkylic and one of the aromatic 1H resonances (Hb). The detailed attribution of the 1H and 13C NMR spectra of the two polymers was made prior to the establishment of the relationships between torsion angle and NMR chemical shifts. This was carried out through DFT calculation of the 1H and 13C shielding constants of the monomers, coupled with distortionless enhancement by polarization transfer and heteronuclear correlation NMR spectra. Several DFT levels of calculation were tested for both optimization of structures and shielding constants calculation. The B3LYP/6-31G(d,p) method was found to perform well in both cases.
id RCAP_673eb54d1648dfa833cf642124ee5114
oai_identifier_str oai:estudogeral.uc.pt:10316/11256
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Conformational Studies of Poly(9,9-dialkylfluorene)s in Solution Using NMR Spectroscopy and Density Functional Theory CalculationsRelationships have been obtained between intermonomer torsional angle and NMR chemical shifts (1H and 13C) for isolated chains of two of the most important poly(9,9-dialkylfluorenes), poly[9,9-bis(2-ethylhexyl)fluorene-2,7-diyl] (PF2/6) and the copolymer poly(9,9-dioctylfluorene-co-[2,1,3]benzothiadiazole-4,7-diyl) (F8BT), using DFT calculations. The correlations provide a model for NMR spectral data interpretation and the basis for analysis of conformational changes in poly(9,9-dialkylfluorene-2,7-diyl)s. The correlations obtained for PF2/6 indicate that the 13C chemical shifts of the aromatic carbons close to the intermonomer connection (C1, C2, and C3) have minimum values at planar conformations (0° and 180°) and maximum values at 90° conformations. In contrast, the 1H chemical shifts of the corresponding aromatic ortho protons (Ha and Hb) are greatest for planar conformations, and the minimum values are seen for 90° conformations. For the F8BT copolymer, similar relationships are observed for the 1H (Ha, Hb, and Hc) aromatic shifts. Considering the aromatic carbons of F8BT, the behavior of C2, C4, C5, and C6 is similar to that found for the PF2/6 carbons. However, C1 and C3 of the fluorene moiety behave differently with varying torsion angle. These are in close proximity to the fluorene−benzothiadiazole linkage and are markedly affected by interactions with the thiadiazole unit such that δC1 is a maximum for 180° and a minimum for 0°, whereas δC3 is a maximum for 0° and minimum for 180°. We have studied the 1H and 13C spectra of the two polymers at temperatures between −50 °C and +65 °C. The observed changes to higher or lower frequency in the aromatic resonances were analyzed using these theoretical relationships. Fluorescence studies on PF2/6 in chloroform solution suggest there are no significant interchain interactions under these conditions. This is supported by variable-temperature NMR results. Polymer−solvent and polymer intramolecular interactions were found to be present and influence all of the alkylic and one of the aromatic 1H resonances (Hb). The detailed attribution of the 1H and 13C NMR spectra of the two polymers was made prior to the establishment of the relationships between torsion angle and NMR chemical shifts. This was carried out through DFT calculation of the 1H and 13C shielding constants of the monomers, coupled with distortionless enhancement by polarization transfer and heteronuclear correlation NMR spectra. Several DFT levels of calculation were tested for both optimization of structures and shielding constants calculation. The B3LYP/6-31G(d,p) method was found to perform well in both cases.American Chemical Society2009-09-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/11256http://hdl.handle.net/10316/11256https://doi.org/10.1021/jp902666eengThe Journal of Physical Chemistry B. 113:35 (2009) 11808-118211520-6106Justino, Licínia L. G.Ramos, M. LuísaAbreu, Paulo E.Carvalho, Rui A.Sobral, Abílio J. F. N.Scherf, UllrichBurrows, Hugh D.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2021-10-29T11:41:30Zoai:estudogeral.uc.pt:10316/11256Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:01:39.339473Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Conformational Studies of Poly(9,9-dialkylfluorene)s in Solution Using NMR Spectroscopy and Density Functional Theory Calculations
title Conformational Studies of Poly(9,9-dialkylfluorene)s in Solution Using NMR Spectroscopy and Density Functional Theory Calculations
spellingShingle Conformational Studies of Poly(9,9-dialkylfluorene)s in Solution Using NMR Spectroscopy and Density Functional Theory Calculations
Justino, Licínia L. G.
title_short Conformational Studies of Poly(9,9-dialkylfluorene)s in Solution Using NMR Spectroscopy and Density Functional Theory Calculations
title_full Conformational Studies of Poly(9,9-dialkylfluorene)s in Solution Using NMR Spectroscopy and Density Functional Theory Calculations
title_fullStr Conformational Studies of Poly(9,9-dialkylfluorene)s in Solution Using NMR Spectroscopy and Density Functional Theory Calculations
title_full_unstemmed Conformational Studies of Poly(9,9-dialkylfluorene)s in Solution Using NMR Spectroscopy and Density Functional Theory Calculations
title_sort Conformational Studies of Poly(9,9-dialkylfluorene)s in Solution Using NMR Spectroscopy and Density Functional Theory Calculations
author Justino, Licínia L. G.
author_facet Justino, Licínia L. G.
Ramos, M. Luísa
Abreu, Paulo E.
Carvalho, Rui A.
Sobral, Abílio J. F. N.
Scherf, Ullrich
Burrows, Hugh D.
author_role author
author2 Ramos, M. Luísa
Abreu, Paulo E.
Carvalho, Rui A.
Sobral, Abílio J. F. N.
Scherf, Ullrich
Burrows, Hugh D.
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Justino, Licínia L. G.
Ramos, M. Luísa
Abreu, Paulo E.
Carvalho, Rui A.
Sobral, Abílio J. F. N.
Scherf, Ullrich
Burrows, Hugh D.
description Relationships have been obtained between intermonomer torsional angle and NMR chemical shifts (1H and 13C) for isolated chains of two of the most important poly(9,9-dialkylfluorenes), poly[9,9-bis(2-ethylhexyl)fluorene-2,7-diyl] (PF2/6) and the copolymer poly(9,9-dioctylfluorene-co-[2,1,3]benzothiadiazole-4,7-diyl) (F8BT), using DFT calculations. The correlations provide a model for NMR spectral data interpretation and the basis for analysis of conformational changes in poly(9,9-dialkylfluorene-2,7-diyl)s. The correlations obtained for PF2/6 indicate that the 13C chemical shifts of the aromatic carbons close to the intermonomer connection (C1, C2, and C3) have minimum values at planar conformations (0° and 180°) and maximum values at 90° conformations. In contrast, the 1H chemical shifts of the corresponding aromatic ortho protons (Ha and Hb) are greatest for planar conformations, and the minimum values are seen for 90° conformations. For the F8BT copolymer, similar relationships are observed for the 1H (Ha, Hb, and Hc) aromatic shifts. Considering the aromatic carbons of F8BT, the behavior of C2, C4, C5, and C6 is similar to that found for the PF2/6 carbons. However, C1 and C3 of the fluorene moiety behave differently with varying torsion angle. These are in close proximity to the fluorene−benzothiadiazole linkage and are markedly affected by interactions with the thiadiazole unit such that δC1 is a maximum for 180° and a minimum for 0°, whereas δC3 is a maximum for 0° and minimum for 180°. We have studied the 1H and 13C spectra of the two polymers at temperatures between −50 °C and +65 °C. The observed changes to higher or lower frequency in the aromatic resonances were analyzed using these theoretical relationships. Fluorescence studies on PF2/6 in chloroform solution suggest there are no significant interchain interactions under these conditions. This is supported by variable-temperature NMR results. Polymer−solvent and polymer intramolecular interactions were found to be present and influence all of the alkylic and one of the aromatic 1H resonances (Hb). The detailed attribution of the 1H and 13C NMR spectra of the two polymers was made prior to the establishment of the relationships between torsion angle and NMR chemical shifts. This was carried out through DFT calculation of the 1H and 13C shielding constants of the monomers, coupled with distortionless enhancement by polarization transfer and heteronuclear correlation NMR spectra. Several DFT levels of calculation were tested for both optimization of structures and shielding constants calculation. The B3LYP/6-31G(d,p) method was found to perform well in both cases.
publishDate 2009
dc.date.none.fl_str_mv 2009-09-03
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/11256
http://hdl.handle.net/10316/11256
https://doi.org/10.1021/jp902666e
url http://hdl.handle.net/10316/11256
https://doi.org/10.1021/jp902666e
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv The Journal of Physical Chemistry B. 113:35 (2009) 11808-11821
1520-6106
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133907412582400