On the application of generic summarization algorithms to music
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10071/9338 |
Resumo: | Several generic summarization algorithms were developed in the past and successfully applied in fields such as text and speech summarization. In this paper, we review and apply these algorithms to music. To evaluate their performance, we adopt an extrinsic approach: we compare a Fado genre classifier's performance using truncated contiguous clips against the summaries extracted with those algorithms on two different datasets. We show that Maximal Marginal Relevance (MMR), LexRank, and Latent Semantic Analysis (LSA) all improve classification performance in both datasets used for testing. |
id |
RCAP_675fe98f6a8393533ee76f3d08e233dc |
---|---|
oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/9338 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
On the application of generic summarization algorithms to musicAutomatic music summarizationGeneric summarization algorithmsSeveral generic summarization algorithms were developed in the past and successfully applied in fields such as text and speech summarization. In this paper, we review and apply these algorithms to music. To evaluate their performance, we adopt an extrinsic approach: we compare a Fado genre classifier's performance using truncated contiguous clips against the summaries extracted with those algorithms on two different datasets. We show that Maximal Marginal Relevance (MMR), LexRank, and Latent Semantic Analysis (LSA) all improve classification performance in both datasets used for testing.IEEE2015-07-17T13:58:12Z2015-01-01T00:00:00Z20152019-05-03T17:15:18Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10071/9338eng1070-990810.1109/LSP.2014.2347582Raposo, F.Ribeiro, R.de Matos, D. M.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:51:21Zoai:repositorio.iscte-iul.pt:10071/9338Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:25:25.642602Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
On the application of generic summarization algorithms to music |
title |
On the application of generic summarization algorithms to music |
spellingShingle |
On the application of generic summarization algorithms to music Raposo, F. Automatic music summarization Generic summarization algorithms |
title_short |
On the application of generic summarization algorithms to music |
title_full |
On the application of generic summarization algorithms to music |
title_fullStr |
On the application of generic summarization algorithms to music |
title_full_unstemmed |
On the application of generic summarization algorithms to music |
title_sort |
On the application of generic summarization algorithms to music |
author |
Raposo, F. |
author_facet |
Raposo, F. Ribeiro, R. de Matos, D. M. |
author_role |
author |
author2 |
Ribeiro, R. de Matos, D. M. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Raposo, F. Ribeiro, R. de Matos, D. M. |
dc.subject.por.fl_str_mv |
Automatic music summarization Generic summarization algorithms |
topic |
Automatic music summarization Generic summarization algorithms |
description |
Several generic summarization algorithms were developed in the past and successfully applied in fields such as text and speech summarization. In this paper, we review and apply these algorithms to music. To evaluate their performance, we adopt an extrinsic approach: we compare a Fado genre classifier's performance using truncated contiguous clips against the summaries extracted with those algorithms on two different datasets. We show that Maximal Marginal Relevance (MMR), LexRank, and Latent Semantic Analysis (LSA) all improve classification performance in both datasets used for testing. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-07-17T13:58:12Z 2015-01-01T00:00:00Z 2015 2019-05-03T17:15:18Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10071/9338 |
url |
http://hdl.handle.net/10071/9338 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1070-9908 10.1109/LSP.2014.2347582 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
IEEE |
publisher.none.fl_str_mv |
IEEE |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134817395146752 |