A fractional analysis in higher dimensions for the Sturm-Liouville problem
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/31250 |
Resumo: | In this work, we consider the n-dimensional fractional Sturm-Liouville eigenvalue problem, by using fractional versions of the gradient operator involving left and right Riemann-Liouville fractional derivatives. We study the main properties of the eigenfunctions and the eigenvalues of the associated fractional boundary problem. More precisely, we show that the eigenfunctions are orthogonal and the eigenvalues are real and simple. Moreover, using techniques from fractional variational calculus, we prove in the main result that the eigenvalues are separated and form an infinite sequence, where the eigenvalues can be ordered according to increasing magnitude. Finally, a connection with Clifford analysis is established. |
id |
RCAP_684cd2aef3cdf5d0ef7864df454e7f72 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/31250 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A fractional analysis in higher dimensions for the Sturm-Liouville problemFractional derivativesFractional Sturm-Liouville problemFractional variational calculusEigenvalue problemEigenfunctionsFractional Clifford analysisIn this work, we consider the n-dimensional fractional Sturm-Liouville eigenvalue problem, by using fractional versions of the gradient operator involving left and right Riemann-Liouville fractional derivatives. We study the main properties of the eigenfunctions and the eigenvalues of the associated fractional boundary problem. More precisely, we show that the eigenfunctions are orthogonal and the eigenvalues are real and simple. Moreover, using techniques from fractional variational calculus, we prove in the main result that the eigenvalues are separated and form an infinite sequence, where the eigenvalues can be ordered according to increasing magnitude. Finally, a connection with Clifford analysis is established.De Gruyter2021-042021-04-01T00:00:00Z2022-03-31T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/31250eng1311-045410.1515/fca-2021-0026Ferreira, M.Rodrigues, M. M.Vieira, N.info:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:00:22Zoai:ria.ua.pt:10773/31250Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:03:11.734952Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A fractional analysis in higher dimensions for the Sturm-Liouville problem |
title |
A fractional analysis in higher dimensions for the Sturm-Liouville problem |
spellingShingle |
A fractional analysis in higher dimensions for the Sturm-Liouville problem Ferreira, M. Fractional derivatives Fractional Sturm-Liouville problem Fractional variational calculus Eigenvalue problem Eigenfunctions Fractional Clifford analysis |
title_short |
A fractional analysis in higher dimensions for the Sturm-Liouville problem |
title_full |
A fractional analysis in higher dimensions for the Sturm-Liouville problem |
title_fullStr |
A fractional analysis in higher dimensions for the Sturm-Liouville problem |
title_full_unstemmed |
A fractional analysis in higher dimensions for the Sturm-Liouville problem |
title_sort |
A fractional analysis in higher dimensions for the Sturm-Liouville problem |
author |
Ferreira, M. |
author_facet |
Ferreira, M. Rodrigues, M. M. Vieira, N. |
author_role |
author |
author2 |
Rodrigues, M. M. Vieira, N. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Ferreira, M. Rodrigues, M. M. Vieira, N. |
dc.subject.por.fl_str_mv |
Fractional derivatives Fractional Sturm-Liouville problem Fractional variational calculus Eigenvalue problem Eigenfunctions Fractional Clifford analysis |
topic |
Fractional derivatives Fractional Sturm-Liouville problem Fractional variational calculus Eigenvalue problem Eigenfunctions Fractional Clifford analysis |
description |
In this work, we consider the n-dimensional fractional Sturm-Liouville eigenvalue problem, by using fractional versions of the gradient operator involving left and right Riemann-Liouville fractional derivatives. We study the main properties of the eigenfunctions and the eigenvalues of the associated fractional boundary problem. More precisely, we show that the eigenfunctions are orthogonal and the eigenvalues are real and simple. Moreover, using techniques from fractional variational calculus, we prove in the main result that the eigenvalues are separated and form an infinite sequence, where the eigenvalues can be ordered according to increasing magnitude. Finally, a connection with Clifford analysis is established. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-04 2021-04-01T00:00:00Z 2022-03-31T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/31250 |
url |
http://hdl.handle.net/10773/31250 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1311-0454 10.1515/fca-2021-0026 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
De Gruyter |
publisher.none.fl_str_mv |
De Gruyter |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137687029940225 |