A fractional analysis in higher dimensions for the Sturm-Liouville problem

Detalhes bibliográficos
Autor(a) principal: Ferreira, M.
Data de Publicação: 2021
Outros Autores: Rodrigues, M. M., Vieira, N.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/31250
Resumo: In this work, we consider the n-dimensional fractional Sturm-Liouville eigenvalue problem, by using fractional versions of the gradient operator involving left and right Riemann-Liouville fractional derivatives. We study the main properties of the eigenfunctions and the eigenvalues of the associated fractional boundary problem. More precisely, we show that the eigenfunctions are orthogonal and the eigenvalues are real and simple. Moreover, using techniques from fractional variational calculus, we prove in the main result that the eigenvalues are separated and form an infinite sequence, where the eigenvalues can be ordered according to increasing magnitude. Finally, a connection with Clifford analysis is established.
id RCAP_684cd2aef3cdf5d0ef7864df454e7f72
oai_identifier_str oai:ria.ua.pt:10773/31250
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling A fractional analysis in higher dimensions for the Sturm-Liouville problemFractional derivativesFractional Sturm-Liouville problemFractional variational calculusEigenvalue problemEigenfunctionsFractional Clifford analysisIn this work, we consider the n-dimensional fractional Sturm-Liouville eigenvalue problem, by using fractional versions of the gradient operator involving left and right Riemann-Liouville fractional derivatives. We study the main properties of the eigenfunctions and the eigenvalues of the associated fractional boundary problem. More precisely, we show that the eigenfunctions are orthogonal and the eigenvalues are real and simple. Moreover, using techniques from fractional variational calculus, we prove in the main result that the eigenvalues are separated and form an infinite sequence, where the eigenvalues can be ordered according to increasing magnitude. Finally, a connection with Clifford analysis is established.De Gruyter2021-042021-04-01T00:00:00Z2022-03-31T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/31250eng1311-045410.1515/fca-2021-0026Ferreira, M.Rodrigues, M. M.Vieira, N.info:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:00:22Zoai:ria.ua.pt:10773/31250Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:03:11.734952Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv A fractional analysis in higher dimensions for the Sturm-Liouville problem
title A fractional analysis in higher dimensions for the Sturm-Liouville problem
spellingShingle A fractional analysis in higher dimensions for the Sturm-Liouville problem
Ferreira, M.
Fractional derivatives
Fractional Sturm-Liouville problem
Fractional variational calculus
Eigenvalue problem
Eigenfunctions
Fractional Clifford analysis
title_short A fractional analysis in higher dimensions for the Sturm-Liouville problem
title_full A fractional analysis in higher dimensions for the Sturm-Liouville problem
title_fullStr A fractional analysis in higher dimensions for the Sturm-Liouville problem
title_full_unstemmed A fractional analysis in higher dimensions for the Sturm-Liouville problem
title_sort A fractional analysis in higher dimensions for the Sturm-Liouville problem
author Ferreira, M.
author_facet Ferreira, M.
Rodrigues, M. M.
Vieira, N.
author_role author
author2 Rodrigues, M. M.
Vieira, N.
author2_role author
author
dc.contributor.author.fl_str_mv Ferreira, M.
Rodrigues, M. M.
Vieira, N.
dc.subject.por.fl_str_mv Fractional derivatives
Fractional Sturm-Liouville problem
Fractional variational calculus
Eigenvalue problem
Eigenfunctions
Fractional Clifford analysis
topic Fractional derivatives
Fractional Sturm-Liouville problem
Fractional variational calculus
Eigenvalue problem
Eigenfunctions
Fractional Clifford analysis
description In this work, we consider the n-dimensional fractional Sturm-Liouville eigenvalue problem, by using fractional versions of the gradient operator involving left and right Riemann-Liouville fractional derivatives. We study the main properties of the eigenfunctions and the eigenvalues of the associated fractional boundary problem. More precisely, we show that the eigenfunctions are orthogonal and the eigenvalues are real and simple. Moreover, using techniques from fractional variational calculus, we prove in the main result that the eigenvalues are separated and form an infinite sequence, where the eigenvalues can be ordered according to increasing magnitude. Finally, a connection with Clifford analysis is established.
publishDate 2021
dc.date.none.fl_str_mv 2021-04
2021-04-01T00:00:00Z
2022-03-31T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/31250
url http://hdl.handle.net/10773/31250
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1311-0454
10.1515/fca-2021-0026
dc.rights.driver.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv De Gruyter
publisher.none.fl_str_mv De Gruyter
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137687029940225