Outliers impact on parameter estimation of gaussian and non-gaussian state space models: a simulation study

Detalhes bibliográficos
Autor(a) principal: Pereira, Fernanda Catarina
Data de Publicação: 2022
Outros Autores: Gonçalves, Arminda Manuela, Costa, Marco
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/34070
Resumo: State space models are powerful and quite flexible tools that allow systems that vary significantly over time due to their formulation to be dealt with, because the models’ parameters vary over time. Assuming a known distribution of errors, in particular the Gaussian distribution, parameter estimation is usually performed by maximum likelihood. However, in time series data, it is common to have discrepant values that can impact statistical data analysis. This paper presents a simulation study with several scenarios to find out in which situations outliers can affect the maximum likelihood estimators. The results obtained were evaluated in terms of the difference between the maximum likelihood estimate and the true value of the parameter and the rate of valid estimates. It was found that both for Gaussian and exponential errors, outliers had more impact in two situations: when the sample size is small and the autoregressive parameter is close to 1, and when the sample size is large and the autoregressive parameter is close to 0.25.
id RCAP_685cf6def92f04969258e87b184f6b68
oai_identifier_str oai:ria.ua.pt:10773/34070
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Outliers impact on parameter estimation of gaussian and non-gaussian state space models: a simulation studyState space modelsParameter estimationOutliersSimulation studyState space models are powerful and quite flexible tools that allow systems that vary significantly over time due to their formulation to be dealt with, because the models’ parameters vary over time. Assuming a known distribution of errors, in particular the Gaussian distribution, parameter estimation is usually performed by maximum likelihood. However, in time series data, it is common to have discrepant values that can impact statistical data analysis. This paper presents a simulation study with several scenarios to find out in which situations outliers can affect the maximum likelihood estimators. The results obtained were evaluated in terms of the difference between the maximum likelihood estimate and the true value of the parameter and the rate of valid estimates. It was found that both for Gaussian and exponential errors, outliers had more impact in two situations: when the sample size is small and the autoregressive parameter is close to 1, and when the sample size is large and the autoregressive parameter is close to 0.25.MDPI2022-06-28T10:46:09Z2022-06-01T00:00:00Z2022-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/34070eng10.3390/engproc2022018031Pereira, Fernanda CatarinaGonçalves, Arminda ManuelaCosta, Marcoinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:05:39Zoai:ria.ua.pt:10773/34070Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:05:25.656415Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Outliers impact on parameter estimation of gaussian and non-gaussian state space models: a simulation study
title Outliers impact on parameter estimation of gaussian and non-gaussian state space models: a simulation study
spellingShingle Outliers impact on parameter estimation of gaussian and non-gaussian state space models: a simulation study
Pereira, Fernanda Catarina
State space models
Parameter estimation
Outliers
Simulation study
title_short Outliers impact on parameter estimation of gaussian and non-gaussian state space models: a simulation study
title_full Outliers impact on parameter estimation of gaussian and non-gaussian state space models: a simulation study
title_fullStr Outliers impact on parameter estimation of gaussian and non-gaussian state space models: a simulation study
title_full_unstemmed Outliers impact on parameter estimation of gaussian and non-gaussian state space models: a simulation study
title_sort Outliers impact on parameter estimation of gaussian and non-gaussian state space models: a simulation study
author Pereira, Fernanda Catarina
author_facet Pereira, Fernanda Catarina
Gonçalves, Arminda Manuela
Costa, Marco
author_role author
author2 Gonçalves, Arminda Manuela
Costa, Marco
author2_role author
author
dc.contributor.author.fl_str_mv Pereira, Fernanda Catarina
Gonçalves, Arminda Manuela
Costa, Marco
dc.subject.por.fl_str_mv State space models
Parameter estimation
Outliers
Simulation study
topic State space models
Parameter estimation
Outliers
Simulation study
description State space models are powerful and quite flexible tools that allow systems that vary significantly over time due to their formulation to be dealt with, because the models’ parameters vary over time. Assuming a known distribution of errors, in particular the Gaussian distribution, parameter estimation is usually performed by maximum likelihood. However, in time series data, it is common to have discrepant values that can impact statistical data analysis. This paper presents a simulation study with several scenarios to find out in which situations outliers can affect the maximum likelihood estimators. The results obtained were evaluated in terms of the difference between the maximum likelihood estimate and the true value of the parameter and the rate of valid estimates. It was found that both for Gaussian and exponential errors, outliers had more impact in two situations: when the sample size is small and the autoregressive parameter is close to 1, and when the sample size is large and the autoregressive parameter is close to 0.25.
publishDate 2022
dc.date.none.fl_str_mv 2022-06-28T10:46:09Z
2022-06-01T00:00:00Z
2022-06
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/34070
url http://hdl.handle.net/10773/34070
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.3390/engproc2022018031
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137709450592256