Outliers impact on parameter estimation of gaussian and non-gaussian state space models: a simulation study
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/34070 |
Resumo: | State space models are powerful and quite flexible tools that allow systems that vary significantly over time due to their formulation to be dealt with, because the models’ parameters vary over time. Assuming a known distribution of errors, in particular the Gaussian distribution, parameter estimation is usually performed by maximum likelihood. However, in time series data, it is common to have discrepant values that can impact statistical data analysis. This paper presents a simulation study with several scenarios to find out in which situations outliers can affect the maximum likelihood estimators. The results obtained were evaluated in terms of the difference between the maximum likelihood estimate and the true value of the parameter and the rate of valid estimates. It was found that both for Gaussian and exponential errors, outliers had more impact in two situations: when the sample size is small and the autoregressive parameter is close to 1, and when the sample size is large and the autoregressive parameter is close to 0.25. |
id |
RCAP_685cf6def92f04969258e87b184f6b68 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/34070 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Outliers impact on parameter estimation of gaussian and non-gaussian state space models: a simulation studyState space modelsParameter estimationOutliersSimulation studyState space models are powerful and quite flexible tools that allow systems that vary significantly over time due to their formulation to be dealt with, because the models’ parameters vary over time. Assuming a known distribution of errors, in particular the Gaussian distribution, parameter estimation is usually performed by maximum likelihood. However, in time series data, it is common to have discrepant values that can impact statistical data analysis. This paper presents a simulation study with several scenarios to find out in which situations outliers can affect the maximum likelihood estimators. The results obtained were evaluated in terms of the difference between the maximum likelihood estimate and the true value of the parameter and the rate of valid estimates. It was found that both for Gaussian and exponential errors, outliers had more impact in two situations: when the sample size is small and the autoregressive parameter is close to 1, and when the sample size is large and the autoregressive parameter is close to 0.25.MDPI2022-06-28T10:46:09Z2022-06-01T00:00:00Z2022-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/34070eng10.3390/engproc2022018031Pereira, Fernanda CatarinaGonçalves, Arminda ManuelaCosta, Marcoinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:05:39Zoai:ria.ua.pt:10773/34070Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:05:25.656415Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Outliers impact on parameter estimation of gaussian and non-gaussian state space models: a simulation study |
title |
Outliers impact on parameter estimation of gaussian and non-gaussian state space models: a simulation study |
spellingShingle |
Outliers impact on parameter estimation of gaussian and non-gaussian state space models: a simulation study Pereira, Fernanda Catarina State space models Parameter estimation Outliers Simulation study |
title_short |
Outliers impact on parameter estimation of gaussian and non-gaussian state space models: a simulation study |
title_full |
Outliers impact on parameter estimation of gaussian and non-gaussian state space models: a simulation study |
title_fullStr |
Outliers impact on parameter estimation of gaussian and non-gaussian state space models: a simulation study |
title_full_unstemmed |
Outliers impact on parameter estimation of gaussian and non-gaussian state space models: a simulation study |
title_sort |
Outliers impact on parameter estimation of gaussian and non-gaussian state space models: a simulation study |
author |
Pereira, Fernanda Catarina |
author_facet |
Pereira, Fernanda Catarina Gonçalves, Arminda Manuela Costa, Marco |
author_role |
author |
author2 |
Gonçalves, Arminda Manuela Costa, Marco |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Pereira, Fernanda Catarina Gonçalves, Arminda Manuela Costa, Marco |
dc.subject.por.fl_str_mv |
State space models Parameter estimation Outliers Simulation study |
topic |
State space models Parameter estimation Outliers Simulation study |
description |
State space models are powerful and quite flexible tools that allow systems that vary significantly over time due to their formulation to be dealt with, because the models’ parameters vary over time. Assuming a known distribution of errors, in particular the Gaussian distribution, parameter estimation is usually performed by maximum likelihood. However, in time series data, it is common to have discrepant values that can impact statistical data analysis. This paper presents a simulation study with several scenarios to find out in which situations outliers can affect the maximum likelihood estimators. The results obtained were evaluated in terms of the difference between the maximum likelihood estimate and the true value of the parameter and the rate of valid estimates. It was found that both for Gaussian and exponential errors, outliers had more impact in two situations: when the sample size is small and the autoregressive parameter is close to 1, and when the sample size is large and the autoregressive parameter is close to 0.25. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-06-28T10:46:09Z 2022-06-01T00:00:00Z 2022-06 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/34070 |
url |
http://hdl.handle.net/10773/34070 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.3390/engproc2022018031 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137709450592256 |