Analytical and Numerical Analysis of Euler-Bernoulli Beams: Telescopic Beam Deflection
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.6/11679 |
Resumo: | Aircraft morphology adaptation is a subject that is becoming increasingly more important in order to significantly improve its adaptation to the mission to perform. Variable wingspan aircraft have been studied for a while now and its benefits in terms of efficiency and performance are well known. However, they have a type of geometry that is structurally complex and difficult to analyze. This study appears with the purpose of simplifying said geometry and analyze the displacements that occur on a telescopic beam subjected to a certain load distributed along its span and in what way different types of supports between its constituent segments and certain structural differences can influence significantly, or not, such displacements. In this dissertation it is assumed a theoretical analysis of Euler-Bernoulli beams, whose primary characteristic is to neglect the shear strains along the beam’s length, admitting that plane cross-sections are perpendicular to the axis before and after the deformation. This theory is used due to the fact that this study only deals with small deflections and assuming that the beam does not decrease its dimensions on the longitudinal axis after the displacements. To test the three different cases of telescopic beam mechanisms, it is important to know what characteristics are necessary for a correct study of the displacements. Firstly, the two different segments have different flexural rigidities. Secondly, the types of supports used between the segments are different, being for Case 1 a cantilever beam support; for Case 2 a simply supported overhanging telescopic mechanism; and for Case 3 an overhanging telescopic support with a continuous contact. For both the analytical and numerical analysis, the parameters used are the total length of the beam (L), each segment’s length (L0, L1 and L2), the ratios between those lengths and the total length of the beam (KL0 and KL2 ) and the ratio between the flexural rigidity of the tip and root segments (KEI ). These parameters are used in order to obtain non-dimensionalized results. The analytical analysis is carried out and the equations that describe the deformation behavior of the beams are obtained. Posteriorly, the numerical analysis of the same cases is performed with the aid of finite element analysis computational tools, in order to compare those results with the former ones. With this, it is intended to understand how these types of support mechanisms and segment size alterations influence the deformations and what is the veracity and acuity of the equations that describe them. It is also proposed the hypothesis that an ideal margin of length of the telescopic segment exists where the beam’s tip deflection decreases, before it reaches its maximum value. |
id |
RCAP_6861c478d8920da970f988938b382404 |
---|---|
oai_identifier_str |
oai:ubibliorum.ubi.pt:10400.6/11679 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Analytical and Numerical Analysis of Euler-Bernoulli Beams: Telescopic Beam DeflectionDeflexão e Método de Elementos FinitosEuler-BernoulliRotaçãoViga TelescópicaAircraft morphology adaptation is a subject that is becoming increasingly more important in order to significantly improve its adaptation to the mission to perform. Variable wingspan aircraft have been studied for a while now and its benefits in terms of efficiency and performance are well known. However, they have a type of geometry that is structurally complex and difficult to analyze. This study appears with the purpose of simplifying said geometry and analyze the displacements that occur on a telescopic beam subjected to a certain load distributed along its span and in what way different types of supports between its constituent segments and certain structural differences can influence significantly, or not, such displacements. In this dissertation it is assumed a theoretical analysis of Euler-Bernoulli beams, whose primary characteristic is to neglect the shear strains along the beam’s length, admitting that plane cross-sections are perpendicular to the axis before and after the deformation. This theory is used due to the fact that this study only deals with small deflections and assuming that the beam does not decrease its dimensions on the longitudinal axis after the displacements. To test the three different cases of telescopic beam mechanisms, it is important to know what characteristics are necessary for a correct study of the displacements. Firstly, the two different segments have different flexural rigidities. Secondly, the types of supports used between the segments are different, being for Case 1 a cantilever beam support; for Case 2 a simply supported overhanging telescopic mechanism; and for Case 3 an overhanging telescopic support with a continuous contact. For both the analytical and numerical analysis, the parameters used are the total length of the beam (L), each segment’s length (L0, L1 and L2), the ratios between those lengths and the total length of the beam (KL0 and KL2 ) and the ratio between the flexural rigidity of the tip and root segments (KEI ). These parameters are used in order to obtain non-dimensionalized results. The analytical analysis is carried out and the equations that describe the deformation behavior of the beams are obtained. Posteriorly, the numerical analysis of the same cases is performed with the aid of finite element analysis computational tools, in order to compare those results with the former ones. With this, it is intended to understand how these types of support mechanisms and segment size alterations influence the deformations and what is the veracity and acuity of the equations that describe them. It is also proposed the hypothesis that an ideal margin of length of the telescopic segment exists where the beam’s tip deflection decreases, before it reaches its maximum value.A adaptação da morfologia de aeronaves é cada vez mais importante de modo a melhorar significativamente a sua adaptação à missão a desempenhar. Aeronaves de envergadura variável são estudadas há já bastante tempo e estão provados os seus benefícios em termos de eficiência e desempenho. No entanto, são geometrias estruturalmente complexas e difíceis de analisar. Este estudo surge com o intuito de simplificar dita geometria e analisar as deformações que ocorrem numa viga telescópica sujeita a uma carga distribuída ao longo da sua envergadura e de que forma diferentes tipos de apoios entre os segmentos que a constituem e determinadas diferenças estruturais podem influenciar significativamente, ou não, essas mesmas deformações. Nesta dissertação é assumida uma análise teórica de vigas de Euler-Bernoulli, cuja principal característica é desprezar as forças de corte ao longo da envergadura da viga, admitindo que as secções transversais são perpendiculares ao eixo neutro antes e após a deformação. Esta teoria é usada devido ao facto de se lidar com pequenas deflexões e admitindo que a viga não diminui as suas dimensões no eixo longitudinal após a deformação. De modo a testar os três diferentes tipos de mecanismos telescópicos, é importante saber quais as características que são necessárias para o correto estudo das deformações. Em primeiro lugar, os dois segmentos têm diferentes valores de rigidez à flexão. Em segundo lugar, os tipos de suporte usados entre os segmentos são diferentes, sendo para o Caso 1 um suporte de viga encastrada; para o Caso 2 uma viga em suspensão com um suporte simples; e para o Caso 3 um viga em suspensão com contacto contínuo entre os dois segmentos. Para a análise analitica e numérica os parâmetros usados são o comprimento total da viga (L), os comprimentos de cada segmento (L0, L1 e L2), as razões entre esses comprimentos e o comprimento total da viga (KL0 e KL2 ) e a razão entre a rigidez à flexão de cada um dos segmentos (KEI ). Estes parâmetros são usados de modo a obter resultados adimensionalizados. Procede-se então à análise analítica e obtenção das equações que descrevem o comportamento de deformação das vigas. Posteriormente, efetuou-se a análise numérica dos mesmos casos com recurso a ferramentas computacionais de elementos finitos para que se possam comparar estes resultados com os da análise analítica. Com isto, pretende-se perceber como é que estes tipos de apoios e alterações no tamanho dos segmentos influenciam as deformações e com que veracidade e acuidade tais equações descrevem as mesmas. É também proposta a hipótese de que existe uma margem ideal do comprimento do segmento telescópico em que a deflexão da ponta da viga diminui, antes de voltar a aumentar até ao seu valor máximo.Gamboa, Pedro VieirauBibliorumBombas, Duarte André2022-01-12T15:15:33Z2021-07-162021-05-172021-07-16T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.6/11679TID:202847241enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-12-15T09:54:21Zoai:ubibliorum.ubi.pt:10400.6/11679Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:51:24.729442Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Analytical and Numerical Analysis of Euler-Bernoulli Beams: Telescopic Beam Deflection |
title |
Analytical and Numerical Analysis of Euler-Bernoulli Beams: Telescopic Beam Deflection |
spellingShingle |
Analytical and Numerical Analysis of Euler-Bernoulli Beams: Telescopic Beam Deflection Bombas, Duarte André Deflexão e Método de Elementos Finitos Euler-Bernoulli Rotação Viga Telescópica |
title_short |
Analytical and Numerical Analysis of Euler-Bernoulli Beams: Telescopic Beam Deflection |
title_full |
Analytical and Numerical Analysis of Euler-Bernoulli Beams: Telescopic Beam Deflection |
title_fullStr |
Analytical and Numerical Analysis of Euler-Bernoulli Beams: Telescopic Beam Deflection |
title_full_unstemmed |
Analytical and Numerical Analysis of Euler-Bernoulli Beams: Telescopic Beam Deflection |
title_sort |
Analytical and Numerical Analysis of Euler-Bernoulli Beams: Telescopic Beam Deflection |
author |
Bombas, Duarte André |
author_facet |
Bombas, Duarte André |
author_role |
author |
dc.contributor.none.fl_str_mv |
Gamboa, Pedro Vieira uBibliorum |
dc.contributor.author.fl_str_mv |
Bombas, Duarte André |
dc.subject.por.fl_str_mv |
Deflexão e Método de Elementos Finitos Euler-Bernoulli Rotação Viga Telescópica |
topic |
Deflexão e Método de Elementos Finitos Euler-Bernoulli Rotação Viga Telescópica |
description |
Aircraft morphology adaptation is a subject that is becoming increasingly more important in order to significantly improve its adaptation to the mission to perform. Variable wingspan aircraft have been studied for a while now and its benefits in terms of efficiency and performance are well known. However, they have a type of geometry that is structurally complex and difficult to analyze. This study appears with the purpose of simplifying said geometry and analyze the displacements that occur on a telescopic beam subjected to a certain load distributed along its span and in what way different types of supports between its constituent segments and certain structural differences can influence significantly, or not, such displacements. In this dissertation it is assumed a theoretical analysis of Euler-Bernoulli beams, whose primary characteristic is to neglect the shear strains along the beam’s length, admitting that plane cross-sections are perpendicular to the axis before and after the deformation. This theory is used due to the fact that this study only deals with small deflections and assuming that the beam does not decrease its dimensions on the longitudinal axis after the displacements. To test the three different cases of telescopic beam mechanisms, it is important to know what characteristics are necessary for a correct study of the displacements. Firstly, the two different segments have different flexural rigidities. Secondly, the types of supports used between the segments are different, being for Case 1 a cantilever beam support; for Case 2 a simply supported overhanging telescopic mechanism; and for Case 3 an overhanging telescopic support with a continuous contact. For both the analytical and numerical analysis, the parameters used are the total length of the beam (L), each segment’s length (L0, L1 and L2), the ratios between those lengths and the total length of the beam (KL0 and KL2 ) and the ratio between the flexural rigidity of the tip and root segments (KEI ). These parameters are used in order to obtain non-dimensionalized results. The analytical analysis is carried out and the equations that describe the deformation behavior of the beams are obtained. Posteriorly, the numerical analysis of the same cases is performed with the aid of finite element analysis computational tools, in order to compare those results with the former ones. With this, it is intended to understand how these types of support mechanisms and segment size alterations influence the deformations and what is the veracity and acuity of the equations that describe them. It is also proposed the hypothesis that an ideal margin of length of the telescopic segment exists where the beam’s tip deflection decreases, before it reaches its maximum value. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-07-16 2021-05-17 2021-07-16T00:00:00Z 2022-01-12T15:15:33Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.6/11679 TID:202847241 |
url |
http://hdl.handle.net/10400.6/11679 |
identifier_str_mv |
TID:202847241 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136403396755456 |