Chestnut honey and bacteriophage application to control Pseudomonas aeruginosa and Escherichia coli biofilms: evaluation in an ex vivo wound model
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/55603 |
Resumo: | Chronic skin wounds represent a major burn both economically and socially. Pseudomonas aeruginosa and Escherichia coli are among the most common colonizers of infected wounds and are prolific biofilm formers. Biofilms are a major problem in infections due to their increasingly difficult control and eradication, and tolerance to multiple prescribed drugs. As so, alternative methods are necessary. Bacteriophages (phages) and honey are both seen as a promising approach for biofilm related infections. Phages have specificity towards a bacterial genus, species or even strain, self-replicating nature, and avoid dysbiosis. Honey has gained acknowledgment due to its antibacterial, antioxidant and anti-inflammatory and wound healing properties. In this work, the effect E. coli and P. aeruginosa phages vB_EcoS_CEB_EC3a and vB_PaeP_PAO1-D and chestnut honey alone, and combined were tested using in vitro (polystyrene) and ex vivo (porcine skin) models and against mono and dual-species biofilms of these bacteria. In general, colonization was higher in the porcine skins and the presence of a second microorganism in a consortium of species did not affect the effectiveness of the treatments. The antibacterial effect of combined therapy against dual-species biofilms led to bacterial reductions that were greater for biofilms formed on polystyrene than on skin. Monospecies biofilms of E. coli were better destroyed with phages and honey than P. aeruginosa monospecies biofilms. Overall, the combined phage-honey formulations resulted in higher efficacies possibly due to honeys capacity to damage the bacterial cell membrane and also to its ability to penetrate the biofilm matrix, promoting and enhancing the subsequent phage infection. |
id |
RCAP_68a0ea13a6652e21deca614f63a0cfc4 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/55603 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Chestnut honey and bacteriophage application to control Pseudomonas aeruginosa and Escherichia coli biofilms: evaluation in an ex vivo wound modelex vivoin vitrobiofilmsdual-speciesP.aeruginosaE.coliScience & TechnologyChronic skin wounds represent a major burn both economically and socially. Pseudomonas aeruginosa and Escherichia coli are among the most common colonizers of infected wounds and are prolific biofilm formers. Biofilms are a major problem in infections due to their increasingly difficult control and eradication, and tolerance to multiple prescribed drugs. As so, alternative methods are necessary. Bacteriophages (phages) and honey are both seen as a promising approach for biofilm related infections. Phages have specificity towards a bacterial genus, species or even strain, self-replicating nature, and avoid dysbiosis. Honey has gained acknowledgment due to its antibacterial, antioxidant and anti-inflammatory and wound healing properties. In this work, the effect E. coli and P. aeruginosa phages vB_EcoS_CEB_EC3a and vB_PaeP_PAO1-D and chestnut honey alone, and combined were tested using in vitro (polystyrene) and ex vivo (porcine skin) models and against mono and dual-species biofilms of these bacteria. In general, colonization was higher in the porcine skins and the presence of a second microorganism in a consortium of species did not affect the effectiveness of the treatments. The antibacterial effect of combined therapy against dual-species biofilms led to bacterial reductions that were greater for biofilms formed on polystyrene than on skin. Monospecies biofilms of E. coli were better destroyed with phages and honey than P. aeruginosa monospecies biofilms. Overall, the combined phage-honey formulations resulted in higher efficacies possibly due to honeys capacity to damage the bacterial cell membrane and also to its ability to penetrate the biofilm matrix, promoting and enhancing the subsequent phage infection.This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684) and BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020—Programa Operacional Regional do Norte and the Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124FEDER-027462). AO acknowledge financial support from the Portuguese Foundation for Science and Technology (FCT) through the project PTDC/CVT-EPI/4008/2014 (POCI-01-0145-FEDER-016598). SS is an Investigador FCT (IF/01413/2013).info:eu-repo/semantics/publishedVersionFrontiers MediaUniversidade do MinhoOliveira, A.Sousa, JéssicaSilva, A.Melo, Luís D. R.Sillankorva, Sanna20182018-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/55603engOliveira, A.; Sousa, Jéssica; Silva, A.; Melo, Luís D. R.; Sillankorva, Sanna, Chestnut honey and bacteriophage application to control Pseudomonas aeruginosa and Escherichia coli biofilms: evaluation in an ex vivo wound model. Frontiers in Microbiology, 9, 1725-1725, 20181664-302X1664-302X10.3389/fmicb.2018.01725http://journal.frontiersin.org/journal/microbiologyinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:43:27Zoai:repositorium.sdum.uminho.pt:1822/55603Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:40:56.511251Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Chestnut honey and bacteriophage application to control Pseudomonas aeruginosa and Escherichia coli biofilms: evaluation in an ex vivo wound model |
title |
Chestnut honey and bacteriophage application to control Pseudomonas aeruginosa and Escherichia coli biofilms: evaluation in an ex vivo wound model |
spellingShingle |
Chestnut honey and bacteriophage application to control Pseudomonas aeruginosa and Escherichia coli biofilms: evaluation in an ex vivo wound model Oliveira, A. ex vivo in vitro biofilms dual-species P.aeruginosa E.coli Science & Technology |
title_short |
Chestnut honey and bacteriophage application to control Pseudomonas aeruginosa and Escherichia coli biofilms: evaluation in an ex vivo wound model |
title_full |
Chestnut honey and bacteriophage application to control Pseudomonas aeruginosa and Escherichia coli biofilms: evaluation in an ex vivo wound model |
title_fullStr |
Chestnut honey and bacteriophage application to control Pseudomonas aeruginosa and Escherichia coli biofilms: evaluation in an ex vivo wound model |
title_full_unstemmed |
Chestnut honey and bacteriophage application to control Pseudomonas aeruginosa and Escherichia coli biofilms: evaluation in an ex vivo wound model |
title_sort |
Chestnut honey and bacteriophage application to control Pseudomonas aeruginosa and Escherichia coli biofilms: evaluation in an ex vivo wound model |
author |
Oliveira, A. |
author_facet |
Oliveira, A. Sousa, Jéssica Silva, A. Melo, Luís D. R. Sillankorva, Sanna |
author_role |
author |
author2 |
Sousa, Jéssica Silva, A. Melo, Luís D. R. Sillankorva, Sanna |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Oliveira, A. Sousa, Jéssica Silva, A. Melo, Luís D. R. Sillankorva, Sanna |
dc.subject.por.fl_str_mv |
ex vivo in vitro biofilms dual-species P.aeruginosa E.coli Science & Technology |
topic |
ex vivo in vitro biofilms dual-species P.aeruginosa E.coli Science & Technology |
description |
Chronic skin wounds represent a major burn both economically and socially. Pseudomonas aeruginosa and Escherichia coli are among the most common colonizers of infected wounds and are prolific biofilm formers. Biofilms are a major problem in infections due to their increasingly difficult control and eradication, and tolerance to multiple prescribed drugs. As so, alternative methods are necessary. Bacteriophages (phages) and honey are both seen as a promising approach for biofilm related infections. Phages have specificity towards a bacterial genus, species or even strain, self-replicating nature, and avoid dysbiosis. Honey has gained acknowledgment due to its antibacterial, antioxidant and anti-inflammatory and wound healing properties. In this work, the effect E. coli and P. aeruginosa phages vB_EcoS_CEB_EC3a and vB_PaeP_PAO1-D and chestnut honey alone, and combined were tested using in vitro (polystyrene) and ex vivo (porcine skin) models and against mono and dual-species biofilms of these bacteria. In general, colonization was higher in the porcine skins and the presence of a second microorganism in a consortium of species did not affect the effectiveness of the treatments. The antibacterial effect of combined therapy against dual-species biofilms led to bacterial reductions that were greater for biofilms formed on polystyrene than on skin. Monospecies biofilms of E. coli were better destroyed with phages and honey than P. aeruginosa monospecies biofilms. Overall, the combined phage-honey formulations resulted in higher efficacies possibly due to honeys capacity to damage the bacterial cell membrane and also to its ability to penetrate the biofilm matrix, promoting and enhancing the subsequent phage infection. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018 2018-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/55603 |
url |
http://hdl.handle.net/1822/55603 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Oliveira, A.; Sousa, Jéssica; Silva, A.; Melo, Luís D. R.; Sillankorva, Sanna, Chestnut honey and bacteriophage application to control Pseudomonas aeruginosa and Escherichia coli biofilms: evaluation in an ex vivo wound model. Frontiers in Microbiology, 9, 1725-1725, 2018 1664-302X 1664-302X 10.3389/fmicb.2018.01725 http://journal.frontiersin.org/journal/microbiology |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Frontiers Media |
publisher.none.fl_str_mv |
Frontiers Media |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132956558622720 |