Quantum Dynamical Rate Constant for the H + O3 Reaction Using a Six-Dimensional Double Many-Body Expansion Potential Energy Surface

Detalhes bibliográficos
Autor(a) principal: Szichman, H.
Data de Publicação: 1997
Outros Autores: Baer, M., Varandas, A. J. C.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/10322
https://doi.org/10.1021/jp9717608
Resumo: We present a quantum mechanical, three-dimensional, infinite-orden-sudden-approximation study of the H + O3 atmospheric reaction using a recently reported double many-body expansion potential energy surface for ground-state HO3. The results are compared with existing experimental data and previously reported quasiclassical trajectory calculations which employed the same interaction potential. Agreement with the recommended experimental data is moderate, but encouraging when compared with the data of Clyne and Monkhouse, which extends over the range of temperatures 300 ≤ T/K ≤ 650, and with the recent measurement of Greenblatt and Wiesenfeld for T = 300 K. In comparison with the classical trajectory results, the agreement is also moderate, the differences being attributed to both methodological approximations in the quantum formalism and the problem of zero-point energy leakage in classical dynamics.
id RCAP_68e7578f71f3fd849d71c4baaed0c216
oai_identifier_str oai:estudogeral.uc.pt:10316/10322
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Quantum Dynamical Rate Constant for the H + O3 Reaction Using a Six-Dimensional Double Many-Body Expansion Potential Energy SurfaceWe present a quantum mechanical, three-dimensional, infinite-orden-sudden-approximation study of the H + O3 atmospheric reaction using a recently reported double many-body expansion potential energy surface for ground-state HO3. The results are compared with existing experimental data and previously reported quasiclassical trajectory calculations which employed the same interaction potential. Agreement with the recommended experimental data is moderate, but encouraging when compared with the data of Clyne and Monkhouse, which extends over the range of temperatures 300 ≤ T/K ≤ 650, and with the recent measurement of Greenblatt and Wiesenfeld for T = 300 K. In comparison with the classical trajectory results, the agreement is also moderate, the differences being attributed to both methodological approximations in the quantum formalism and the problem of zero-point energy leakage in classical dynamics.American Chemical Society1997-11-20info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/10322http://hdl.handle.net/10316/10322https://doi.org/10.1021/jp9717608engThe Journal of Physical Chemistry A. 101:47 (1997) 8817-88211089-5639Szichman, H.Baer, M.Varandas, A. J. C.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2020-05-29T10:04:38Zoai:estudogeral.uc.pt:10316/10322Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:01:12.454278Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Quantum Dynamical Rate Constant for the H + O3 Reaction Using a Six-Dimensional Double Many-Body Expansion Potential Energy Surface
title Quantum Dynamical Rate Constant for the H + O3 Reaction Using a Six-Dimensional Double Many-Body Expansion Potential Energy Surface
spellingShingle Quantum Dynamical Rate Constant for the H + O3 Reaction Using a Six-Dimensional Double Many-Body Expansion Potential Energy Surface
Szichman, H.
title_short Quantum Dynamical Rate Constant for the H + O3 Reaction Using a Six-Dimensional Double Many-Body Expansion Potential Energy Surface
title_full Quantum Dynamical Rate Constant for the H + O3 Reaction Using a Six-Dimensional Double Many-Body Expansion Potential Energy Surface
title_fullStr Quantum Dynamical Rate Constant for the H + O3 Reaction Using a Six-Dimensional Double Many-Body Expansion Potential Energy Surface
title_full_unstemmed Quantum Dynamical Rate Constant for the H + O3 Reaction Using a Six-Dimensional Double Many-Body Expansion Potential Energy Surface
title_sort Quantum Dynamical Rate Constant for the H + O3 Reaction Using a Six-Dimensional Double Many-Body Expansion Potential Energy Surface
author Szichman, H.
author_facet Szichman, H.
Baer, M.
Varandas, A. J. C.
author_role author
author2 Baer, M.
Varandas, A. J. C.
author2_role author
author
dc.contributor.author.fl_str_mv Szichman, H.
Baer, M.
Varandas, A. J. C.
description We present a quantum mechanical, three-dimensional, infinite-orden-sudden-approximation study of the H + O3 atmospheric reaction using a recently reported double many-body expansion potential energy surface for ground-state HO3. The results are compared with existing experimental data and previously reported quasiclassical trajectory calculations which employed the same interaction potential. Agreement with the recommended experimental data is moderate, but encouraging when compared with the data of Clyne and Monkhouse, which extends over the range of temperatures 300 ≤ T/K ≤ 650, and with the recent measurement of Greenblatt and Wiesenfeld for T = 300 K. In comparison with the classical trajectory results, the agreement is also moderate, the differences being attributed to both methodological approximations in the quantum formalism and the problem of zero-point energy leakage in classical dynamics.
publishDate 1997
dc.date.none.fl_str_mv 1997-11-20
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/10322
http://hdl.handle.net/10316/10322
https://doi.org/10.1021/jp9717608
url http://hdl.handle.net/10316/10322
https://doi.org/10.1021/jp9717608
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv The Journal of Physical Chemistry A. 101:47 (1997) 8817-8821
1089-5639
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133904704110592