Quantum Dynamical Rate Constant for the H + O3 Reaction Using a Six-Dimensional Double Many-Body Expansion Potential Energy Surface
Autor(a) principal: | |
---|---|
Data de Publicação: | 1997 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/10322 https://doi.org/10.1021/jp9717608 |
Resumo: | We present a quantum mechanical, three-dimensional, infinite-orden-sudden-approximation study of the H + O3 atmospheric reaction using a recently reported double many-body expansion potential energy surface for ground-state HO3. The results are compared with existing experimental data and previously reported quasiclassical trajectory calculations which employed the same interaction potential. Agreement with the recommended experimental data is moderate, but encouraging when compared with the data of Clyne and Monkhouse, which extends over the range of temperatures 300 ≤ T/K ≤ 650, and with the recent measurement of Greenblatt and Wiesenfeld for T = 300 K. In comparison with the classical trajectory results, the agreement is also moderate, the differences being attributed to both methodological approximations in the quantum formalism and the problem of zero-point energy leakage in classical dynamics. |
id |
RCAP_68e7578f71f3fd849d71c4baaed0c216 |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/10322 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Quantum Dynamical Rate Constant for the H + O3 Reaction Using a Six-Dimensional Double Many-Body Expansion Potential Energy SurfaceWe present a quantum mechanical, three-dimensional, infinite-orden-sudden-approximation study of the H + O3 atmospheric reaction using a recently reported double many-body expansion potential energy surface for ground-state HO3. The results are compared with existing experimental data and previously reported quasiclassical trajectory calculations which employed the same interaction potential. Agreement with the recommended experimental data is moderate, but encouraging when compared with the data of Clyne and Monkhouse, which extends over the range of temperatures 300 ≤ T/K ≤ 650, and with the recent measurement of Greenblatt and Wiesenfeld for T = 300 K. In comparison with the classical trajectory results, the agreement is also moderate, the differences being attributed to both methodological approximations in the quantum formalism and the problem of zero-point energy leakage in classical dynamics.American Chemical Society1997-11-20info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/10322http://hdl.handle.net/10316/10322https://doi.org/10.1021/jp9717608engThe Journal of Physical Chemistry A. 101:47 (1997) 8817-88211089-5639Szichman, H.Baer, M.Varandas, A. J. C.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2020-05-29T10:04:38Zoai:estudogeral.uc.pt:10316/10322Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:01:12.454278Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Quantum Dynamical Rate Constant for the H + O3 Reaction Using a Six-Dimensional Double Many-Body Expansion Potential Energy Surface |
title |
Quantum Dynamical Rate Constant for the H + O3 Reaction Using a Six-Dimensional Double Many-Body Expansion Potential Energy Surface |
spellingShingle |
Quantum Dynamical Rate Constant for the H + O3 Reaction Using a Six-Dimensional Double Many-Body Expansion Potential Energy Surface Szichman, H. |
title_short |
Quantum Dynamical Rate Constant for the H + O3 Reaction Using a Six-Dimensional Double Many-Body Expansion Potential Energy Surface |
title_full |
Quantum Dynamical Rate Constant for the H + O3 Reaction Using a Six-Dimensional Double Many-Body Expansion Potential Energy Surface |
title_fullStr |
Quantum Dynamical Rate Constant for the H + O3 Reaction Using a Six-Dimensional Double Many-Body Expansion Potential Energy Surface |
title_full_unstemmed |
Quantum Dynamical Rate Constant for the H + O3 Reaction Using a Six-Dimensional Double Many-Body Expansion Potential Energy Surface |
title_sort |
Quantum Dynamical Rate Constant for the H + O3 Reaction Using a Six-Dimensional Double Many-Body Expansion Potential Energy Surface |
author |
Szichman, H. |
author_facet |
Szichman, H. Baer, M. Varandas, A. J. C. |
author_role |
author |
author2 |
Baer, M. Varandas, A. J. C. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Szichman, H. Baer, M. Varandas, A. J. C. |
description |
We present a quantum mechanical, three-dimensional, infinite-orden-sudden-approximation study of the H + O3 atmospheric reaction using a recently reported double many-body expansion potential energy surface for ground-state HO3. The results are compared with existing experimental data and previously reported quasiclassical trajectory calculations which employed the same interaction potential. Agreement with the recommended experimental data is moderate, but encouraging when compared with the data of Clyne and Monkhouse, which extends over the range of temperatures 300 ≤ T/K ≤ 650, and with the recent measurement of Greenblatt and Wiesenfeld for T = 300 K. In comparison with the classical trajectory results, the agreement is also moderate, the differences being attributed to both methodological approximations in the quantum formalism and the problem of zero-point energy leakage in classical dynamics. |
publishDate |
1997 |
dc.date.none.fl_str_mv |
1997-11-20 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/10322 http://hdl.handle.net/10316/10322 https://doi.org/10.1021/jp9717608 |
url |
http://hdl.handle.net/10316/10322 https://doi.org/10.1021/jp9717608 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
The Journal of Physical Chemistry A. 101:47 (1997) 8817-8821 1089-5639 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
American Chemical Society |
publisher.none.fl_str_mv |
American Chemical Society |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133904704110592 |