The unique regulation of iron-sulfur cluster biogenesis in a Gram-positive bacterium
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10216/110347 |
Resumo: | Iron-sulfur clusters function as cofactors of a wide range of proteins, with diverse molecular roles in both prokaryotic and eukaryotic cells. Dedicated machineries assemble the clusters and deliver them to the final acceptor molecules in a tightly regulated process. In the prototypical Gram-negative bacterium Escherichia coli, the two existing iron-sulfur cluster assembly systems, iron-sulfur cluster (ISC) and sulfur assimilation (SUF) pathways, are closely interconnected. The ISC pathway regulator, IscR, is a transcription factor of the helix-turn-helix type that can coordinate a [2Fe-2S] cluster. Redox conditions and iron or sulfur availability modulate the ligation status of the labile IscR cluster, which in turn determines a switch in DNA sequence specificity of the regulator: cluster-containing IscR can bind to a family of gene promoters (type-1) whereas the clusterless form recognizes only a second group of sequences (type-2). However, iron-sulfur cluster biogenesis in Gram-positive bacteria is not so well characterized, and most organisms of this group display only one of the iron-sulfur cluster assembly systems. A notable exception is the unique Gram-positive dissimilatory metal reducing bacterium Thermincola potens, where genes from both systems could be identified, albeit with a diverging organization from that of Gram-negative bacteria. We demonstrated that one of these genes encodes a functional IscR homolog and is likely involved in the regulation of iron-sulfur cluster biogenesis in T. potens. Structural and biochemical characterization of T. potens and E. coli IscR revealed a strikingly similar architecture and unveiled an unforeseen conservation of the unique mechanism of sequence discrimination characteristic of this distinctive group of transcription regulators. |
id |
RCAP_69014b1dbe351d2b0254f77aaecdf432 |
---|---|
oai_identifier_str |
oai:repositorio-aberto.up.pt:10216/110347 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
The unique regulation of iron-sulfur cluster biogenesis in a Gram-positive bacteriumCrystallography, X-RayDNA Bacterial/metabolismDNA-Binding Proteins/geneticsDNA-Binding Proteins/metabolismDimerizationEscherichia coli K12/geneticsEscherichia coli K12/metabolismEscherichia coli Proteins/geneticsEscherichia coli Proteins/metabolismGene Expression Regulation, BacterialGram-Positive Bacteria/geneticsGram-Positive Bacteria/metabolismHelix-Turn-Helix MotifsIron-Sulfur Proteins/geneticsIron-Sulfur Proteins/metabolismPoint MutationPromoter Regions GeneticProtein Structure TertiaryTranscription Factors/geneticsTranscription Factors/metabolismIron-sulfur clusters function as cofactors of a wide range of proteins, with diverse molecular roles in both prokaryotic and eukaryotic cells. Dedicated machineries assemble the clusters and deliver them to the final acceptor molecules in a tightly regulated process. In the prototypical Gram-negative bacterium Escherichia coli, the two existing iron-sulfur cluster assembly systems, iron-sulfur cluster (ISC) and sulfur assimilation (SUF) pathways, are closely interconnected. The ISC pathway regulator, IscR, is a transcription factor of the helix-turn-helix type that can coordinate a [2Fe-2S] cluster. Redox conditions and iron or sulfur availability modulate the ligation status of the labile IscR cluster, which in turn determines a switch in DNA sequence specificity of the regulator: cluster-containing IscR can bind to a family of gene promoters (type-1) whereas the clusterless form recognizes only a second group of sequences (type-2). However, iron-sulfur cluster biogenesis in Gram-positive bacteria is not so well characterized, and most organisms of this group display only one of the iron-sulfur cluster assembly systems. A notable exception is the unique Gram-positive dissimilatory metal reducing bacterium Thermincola potens, where genes from both systems could be identified, albeit with a diverging organization from that of Gram-negative bacteria. We demonstrated that one of these genes encodes a functional IscR homolog and is likely involved in the regulation of iron-sulfur cluster biogenesis in T. potens. Structural and biochemical characterization of T. potens and E. coli IscR revealed a strikingly similar architecture and unveiled an unforeseen conservation of the unique mechanism of sequence discrimination characteristic of this distinctive group of transcription regulators.National Academy of Sciences20142014-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfapplication/pdfhttp://hdl.handle.net/10216/110347eng0027-842410.1073/pnas.1322728111Santos, JAAlonso-García, NMacedo-Ribeiro, SPereira, PJinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-09-27T06:47:52Zoai:repositorio-aberto.up.pt:10216/110347Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-09-27T06:47:52Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
The unique regulation of iron-sulfur cluster biogenesis in a Gram-positive bacterium |
title |
The unique regulation of iron-sulfur cluster biogenesis in a Gram-positive bacterium |
spellingShingle |
The unique regulation of iron-sulfur cluster biogenesis in a Gram-positive bacterium Santos, JA Crystallography, X-Ray DNA Bacterial/metabolism DNA-Binding Proteins/genetics DNA-Binding Proteins/metabolism Dimerization Escherichia coli K12/genetics Escherichia coli K12/metabolism Escherichia coli Proteins/genetics Escherichia coli Proteins/metabolism Gene Expression Regulation, Bacterial Gram-Positive Bacteria/genetics Gram-Positive Bacteria/metabolism Helix-Turn-Helix Motifs Iron-Sulfur Proteins/genetics Iron-Sulfur Proteins/metabolism Point Mutation Promoter Regions Genetic Protein Structure Tertiary Transcription Factors/genetics Transcription Factors/metabolism |
title_short |
The unique regulation of iron-sulfur cluster biogenesis in a Gram-positive bacterium |
title_full |
The unique regulation of iron-sulfur cluster biogenesis in a Gram-positive bacterium |
title_fullStr |
The unique regulation of iron-sulfur cluster biogenesis in a Gram-positive bacterium |
title_full_unstemmed |
The unique regulation of iron-sulfur cluster biogenesis in a Gram-positive bacterium |
title_sort |
The unique regulation of iron-sulfur cluster biogenesis in a Gram-positive bacterium |
author |
Santos, JA |
author_facet |
Santos, JA Alonso-García, N Macedo-Ribeiro, S Pereira, PJ |
author_role |
author |
author2 |
Alonso-García, N Macedo-Ribeiro, S Pereira, PJ |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Santos, JA Alonso-García, N Macedo-Ribeiro, S Pereira, PJ |
dc.subject.por.fl_str_mv |
Crystallography, X-Ray DNA Bacterial/metabolism DNA-Binding Proteins/genetics DNA-Binding Proteins/metabolism Dimerization Escherichia coli K12/genetics Escherichia coli K12/metabolism Escherichia coli Proteins/genetics Escherichia coli Proteins/metabolism Gene Expression Regulation, Bacterial Gram-Positive Bacteria/genetics Gram-Positive Bacteria/metabolism Helix-Turn-Helix Motifs Iron-Sulfur Proteins/genetics Iron-Sulfur Proteins/metabolism Point Mutation Promoter Regions Genetic Protein Structure Tertiary Transcription Factors/genetics Transcription Factors/metabolism |
topic |
Crystallography, X-Ray DNA Bacterial/metabolism DNA-Binding Proteins/genetics DNA-Binding Proteins/metabolism Dimerization Escherichia coli K12/genetics Escherichia coli K12/metabolism Escherichia coli Proteins/genetics Escherichia coli Proteins/metabolism Gene Expression Regulation, Bacterial Gram-Positive Bacteria/genetics Gram-Positive Bacteria/metabolism Helix-Turn-Helix Motifs Iron-Sulfur Proteins/genetics Iron-Sulfur Proteins/metabolism Point Mutation Promoter Regions Genetic Protein Structure Tertiary Transcription Factors/genetics Transcription Factors/metabolism |
description |
Iron-sulfur clusters function as cofactors of a wide range of proteins, with diverse molecular roles in both prokaryotic and eukaryotic cells. Dedicated machineries assemble the clusters and deliver them to the final acceptor molecules in a tightly regulated process. In the prototypical Gram-negative bacterium Escherichia coli, the two existing iron-sulfur cluster assembly systems, iron-sulfur cluster (ISC) and sulfur assimilation (SUF) pathways, are closely interconnected. The ISC pathway regulator, IscR, is a transcription factor of the helix-turn-helix type that can coordinate a [2Fe-2S] cluster. Redox conditions and iron or sulfur availability modulate the ligation status of the labile IscR cluster, which in turn determines a switch in DNA sequence specificity of the regulator: cluster-containing IscR can bind to a family of gene promoters (type-1) whereas the clusterless form recognizes only a second group of sequences (type-2). However, iron-sulfur cluster biogenesis in Gram-positive bacteria is not so well characterized, and most organisms of this group display only one of the iron-sulfur cluster assembly systems. A notable exception is the unique Gram-positive dissimilatory metal reducing bacterium Thermincola potens, where genes from both systems could be identified, albeit with a diverging organization from that of Gram-negative bacteria. We demonstrated that one of these genes encodes a functional IscR homolog and is likely involved in the regulation of iron-sulfur cluster biogenesis in T. potens. Structural and biochemical characterization of T. potens and E. coli IscR revealed a strikingly similar architecture and unveiled an unforeseen conservation of the unique mechanism of sequence discrimination characteristic of this distinctive group of transcription regulators. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014 2014-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10216/110347 |
url |
http://hdl.handle.net/10216/110347 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0027-8424 10.1073/pnas.1322728111 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
National Academy of Sciences |
publisher.none.fl_str_mv |
National Academy of Sciences |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817547374636040192 |