The symmetry of Littlewood-Richardson coefficients: a new hive model involutory bijection

Detalhes bibliográficos
Autor(a) principal: Terada, Itaru
Data de Publicação: 2018
Outros Autores: King, Ronald C, Azenhas, Olga
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/89666
https://doi.org/10.1137/17M1162834
Resumo: Littlewood--Richardson (LR) coefficients c^{\lambda}_{\mu\nu} may be evaluated by means of several combinatorial models. These include not only the original one, based on the LR rule for enumerating LR tableaux of skew shape \lambda /\mu and weight \nu, but also one based on the enumeration of LR hives with boundary edge labels \lambda, \mu, and \nu. Unfortunately, neither of these reveals in any obvious way the well-known symmetry property c^{\lambda}_{\mu\nu} = c^{\lambda}_{\nu\mu}. Here we introduce a map \sigma^(n) on LR hives that interchanges contributions to c^{\lambda}_{\mu\nu} and c^{\lambda}_{\nu\mu} for any partitions \lambda , \mu, \nu of lengths no greater than n, and then we prove that it is a bijection, thereby making manifest the required symmetry property. The map \sigma^(n) involves repeated path removals from a given LR hive with boundary edge labels (\lambda,\mu,\nu) that give rise to a sequence of hives whose left-hand boundary edge labels define a partner LR hive with boundary edge labels (\lambda,\nu,\mu). A new feature of our hive model is its realization in terms of edge labels and rhombus gradients, with the latter playing a key role in defining the action of path removal operators in a manner designed to preserve the required hive conditions. A consideration of the detailed properties of the path removal procedures also leads to a wholly combinatorial selfcontained hive based proof that \sigma^(n) is an involution.
id RCAP_6999f3c057c03ce54b66f0651da0a019
oai_identifier_str oai:estudogeral.uc.pt:10316/89666
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling The symmetry of Littlewood-Richardson coefficients: a new hive model involutory bijectionLittlewood--Richardson coefficients, symmetry, involutory, hive, bijectionLittlewood--Richardson (LR) coefficients c^{\lambda}_{\mu\nu} may be evaluated by means of several combinatorial models. These include not only the original one, based on the LR rule for enumerating LR tableaux of skew shape \lambda /\mu and weight \nu, but also one based on the enumeration of LR hives with boundary edge labels \lambda, \mu, and \nu. Unfortunately, neither of these reveals in any obvious way the well-known symmetry property c^{\lambda}_{\mu\nu} = c^{\lambda}_{\nu\mu}. Here we introduce a map \sigma^(n) on LR hives that interchanges contributions to c^{\lambda}_{\mu\nu} and c^{\lambda}_{\nu\mu} for any partitions \lambda , \mu, \nu of lengths no greater than n, and then we prove that it is a bijection, thereby making manifest the required symmetry property. The map \sigma^(n) involves repeated path removals from a given LR hive with boundary edge labels (\lambda,\mu,\nu) that give rise to a sequence of hives whose left-hand boundary edge labels define a partner LR hive with boundary edge labels (\lambda,\nu,\mu). A new feature of our hive model is its realization in terms of edge labels and rhombus gradients, with the latter playing a key role in defining the action of path removal operators in a manner designed to preserve the required hive conditions. A consideration of the detailed properties of the path removal procedures also leads to a wholly combinatorial selfcontained hive based proof that \sigma^(n) is an involution.Society for Industrial and Applied Mathematics2018info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/89666http://hdl.handle.net/10316/89666https://doi.org/10.1137/17M1162834enghttps://epubs.siam.org/toc/sjdmec/32/4Terada, ItaruKing, Ronald CAzenhas, Olgainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-05-25T03:05:23Zoai:estudogeral.uc.pt:10316/89666Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:09:54.418891Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv The symmetry of Littlewood-Richardson coefficients: a new hive model involutory bijection
title The symmetry of Littlewood-Richardson coefficients: a new hive model involutory bijection
spellingShingle The symmetry of Littlewood-Richardson coefficients: a new hive model involutory bijection
Terada, Itaru
Littlewood--Richardson coefficients, symmetry, involutory, hive, bijection
title_short The symmetry of Littlewood-Richardson coefficients: a new hive model involutory bijection
title_full The symmetry of Littlewood-Richardson coefficients: a new hive model involutory bijection
title_fullStr The symmetry of Littlewood-Richardson coefficients: a new hive model involutory bijection
title_full_unstemmed The symmetry of Littlewood-Richardson coefficients: a new hive model involutory bijection
title_sort The symmetry of Littlewood-Richardson coefficients: a new hive model involutory bijection
author Terada, Itaru
author_facet Terada, Itaru
King, Ronald C
Azenhas, Olga
author_role author
author2 King, Ronald C
Azenhas, Olga
author2_role author
author
dc.contributor.author.fl_str_mv Terada, Itaru
King, Ronald C
Azenhas, Olga
dc.subject.por.fl_str_mv Littlewood--Richardson coefficients, symmetry, involutory, hive, bijection
topic Littlewood--Richardson coefficients, symmetry, involutory, hive, bijection
description Littlewood--Richardson (LR) coefficients c^{\lambda}_{\mu\nu} may be evaluated by means of several combinatorial models. These include not only the original one, based on the LR rule for enumerating LR tableaux of skew shape \lambda /\mu and weight \nu, but also one based on the enumeration of LR hives with boundary edge labels \lambda, \mu, and \nu. Unfortunately, neither of these reveals in any obvious way the well-known symmetry property c^{\lambda}_{\mu\nu} = c^{\lambda}_{\nu\mu}. Here we introduce a map \sigma^(n) on LR hives that interchanges contributions to c^{\lambda}_{\mu\nu} and c^{\lambda}_{\nu\mu} for any partitions \lambda , \mu, \nu of lengths no greater than n, and then we prove that it is a bijection, thereby making manifest the required symmetry property. The map \sigma^(n) involves repeated path removals from a given LR hive with boundary edge labels (\lambda,\mu,\nu) that give rise to a sequence of hives whose left-hand boundary edge labels define a partner LR hive with boundary edge labels (\lambda,\nu,\mu). A new feature of our hive model is its realization in terms of edge labels and rhombus gradients, with the latter playing a key role in defining the action of path removal operators in a manner designed to preserve the required hive conditions. A consideration of the detailed properties of the path removal procedures also leads to a wholly combinatorial selfcontained hive based proof that \sigma^(n) is an involution.
publishDate 2018
dc.date.none.fl_str_mv 2018
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/89666
http://hdl.handle.net/10316/89666
https://doi.org/10.1137/17M1162834
url http://hdl.handle.net/10316/89666
https://doi.org/10.1137/17M1162834
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://epubs.siam.org/toc/sjdmec/32/4
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Society for Industrial and Applied Mathematics
publisher.none.fl_str_mv Society for Industrial and Applied Mathematics
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133994181197824