The symmetry of Littlewood-Richardson coefficients: a new hive model involutory bijection
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/89666 https://doi.org/10.1137/17M1162834 |
Resumo: | Littlewood--Richardson (LR) coefficients c^{\lambda}_{\mu\nu} may be evaluated by means of several combinatorial models. These include not only the original one, based on the LR rule for enumerating LR tableaux of skew shape \lambda /\mu and weight \nu, but also one based on the enumeration of LR hives with boundary edge labels \lambda, \mu, and \nu. Unfortunately, neither of these reveals in any obvious way the well-known symmetry property c^{\lambda}_{\mu\nu} = c^{\lambda}_{\nu\mu}. Here we introduce a map \sigma^(n) on LR hives that interchanges contributions to c^{\lambda}_{\mu\nu} and c^{\lambda}_{\nu\mu} for any partitions \lambda , \mu, \nu of lengths no greater than n, and then we prove that it is a bijection, thereby making manifest the required symmetry property. The map \sigma^(n) involves repeated path removals from a given LR hive with boundary edge labels (\lambda,\mu,\nu) that give rise to a sequence of hives whose left-hand boundary edge labels define a partner LR hive with boundary edge labels (\lambda,\nu,\mu). A new feature of our hive model is its realization in terms of edge labels and rhombus gradients, with the latter playing a key role in defining the action of path removal operators in a manner designed to preserve the required hive conditions. A consideration of the detailed properties of the path removal procedures also leads to a wholly combinatorial selfcontained hive based proof that \sigma^(n) is an involution. |
id |
RCAP_6999f3c057c03ce54b66f0651da0a019 |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/89666 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
The symmetry of Littlewood-Richardson coefficients: a new hive model involutory bijectionLittlewood--Richardson coefficients, symmetry, involutory, hive, bijectionLittlewood--Richardson (LR) coefficients c^{\lambda}_{\mu\nu} may be evaluated by means of several combinatorial models. These include not only the original one, based on the LR rule for enumerating LR tableaux of skew shape \lambda /\mu and weight \nu, but also one based on the enumeration of LR hives with boundary edge labels \lambda, \mu, and \nu. Unfortunately, neither of these reveals in any obvious way the well-known symmetry property c^{\lambda}_{\mu\nu} = c^{\lambda}_{\nu\mu}. Here we introduce a map \sigma^(n) on LR hives that interchanges contributions to c^{\lambda}_{\mu\nu} and c^{\lambda}_{\nu\mu} for any partitions \lambda , \mu, \nu of lengths no greater than n, and then we prove that it is a bijection, thereby making manifest the required symmetry property. The map \sigma^(n) involves repeated path removals from a given LR hive with boundary edge labels (\lambda,\mu,\nu) that give rise to a sequence of hives whose left-hand boundary edge labels define a partner LR hive with boundary edge labels (\lambda,\nu,\mu). A new feature of our hive model is its realization in terms of edge labels and rhombus gradients, with the latter playing a key role in defining the action of path removal operators in a manner designed to preserve the required hive conditions. A consideration of the detailed properties of the path removal procedures also leads to a wholly combinatorial selfcontained hive based proof that \sigma^(n) is an involution.Society for Industrial and Applied Mathematics2018info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/89666http://hdl.handle.net/10316/89666https://doi.org/10.1137/17M1162834enghttps://epubs.siam.org/toc/sjdmec/32/4Terada, ItaruKing, Ronald CAzenhas, Olgainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-05-25T03:05:23Zoai:estudogeral.uc.pt:10316/89666Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:09:54.418891Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
The symmetry of Littlewood-Richardson coefficients: a new hive model involutory bijection |
title |
The symmetry of Littlewood-Richardson coefficients: a new hive model involutory bijection |
spellingShingle |
The symmetry of Littlewood-Richardson coefficients: a new hive model involutory bijection Terada, Itaru Littlewood--Richardson coefficients, symmetry, involutory, hive, bijection |
title_short |
The symmetry of Littlewood-Richardson coefficients: a new hive model involutory bijection |
title_full |
The symmetry of Littlewood-Richardson coefficients: a new hive model involutory bijection |
title_fullStr |
The symmetry of Littlewood-Richardson coefficients: a new hive model involutory bijection |
title_full_unstemmed |
The symmetry of Littlewood-Richardson coefficients: a new hive model involutory bijection |
title_sort |
The symmetry of Littlewood-Richardson coefficients: a new hive model involutory bijection |
author |
Terada, Itaru |
author_facet |
Terada, Itaru King, Ronald C Azenhas, Olga |
author_role |
author |
author2 |
King, Ronald C Azenhas, Olga |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Terada, Itaru King, Ronald C Azenhas, Olga |
dc.subject.por.fl_str_mv |
Littlewood--Richardson coefficients, symmetry, involutory, hive, bijection |
topic |
Littlewood--Richardson coefficients, symmetry, involutory, hive, bijection |
description |
Littlewood--Richardson (LR) coefficients c^{\lambda}_{\mu\nu} may be evaluated by means of several combinatorial models. These include not only the original one, based on the LR rule for enumerating LR tableaux of skew shape \lambda /\mu and weight \nu, but also one based on the enumeration of LR hives with boundary edge labels \lambda, \mu, and \nu. Unfortunately, neither of these reveals in any obvious way the well-known symmetry property c^{\lambda}_{\mu\nu} = c^{\lambda}_{\nu\mu}. Here we introduce a map \sigma^(n) on LR hives that interchanges contributions to c^{\lambda}_{\mu\nu} and c^{\lambda}_{\nu\mu} for any partitions \lambda , \mu, \nu of lengths no greater than n, and then we prove that it is a bijection, thereby making manifest the required symmetry property. The map \sigma^(n) involves repeated path removals from a given LR hive with boundary edge labels (\lambda,\mu,\nu) that give rise to a sequence of hives whose left-hand boundary edge labels define a partner LR hive with boundary edge labels (\lambda,\nu,\mu). A new feature of our hive model is its realization in terms of edge labels and rhombus gradients, with the latter playing a key role in defining the action of path removal operators in a manner designed to preserve the required hive conditions. A consideration of the detailed properties of the path removal procedures also leads to a wholly combinatorial selfcontained hive based proof that \sigma^(n) is an involution. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/89666 http://hdl.handle.net/10316/89666 https://doi.org/10.1137/17M1162834 |
url |
http://hdl.handle.net/10316/89666 https://doi.org/10.1137/17M1162834 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://epubs.siam.org/toc/sjdmec/32/4 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Society for Industrial and Applied Mathematics |
publisher.none.fl_str_mv |
Society for Industrial and Applied Mathematics |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133994181197824 |