Modelling abstention rate using spatial regression
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/64940 |
Resumo: | Dissertation presented as the partial requirement for obtaining a Master's degree in Statistics and Information Management, specialization in Information Analysis and Management |
id |
RCAP_69f66de507f1fb230aa4247d1c8d35ab |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/64940 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Modelling abstention rate using spatial regressionVoter turnoutAbstention rateSociological VariablesEconomic VariablesSpatial AnalysisGeographically Weighted RegressionSpatial Non-StationarityDissertation presented as the partial requirement for obtaining a Master's degree in Statistics and Information Management, specialization in Information Analysis and ManagementDuring the last few elections that were held in Portugal, there have been very low percentages of voter turnout. This will obviously impact the result of those elections and can maybe be related to the general disenchantment of the population regarding the country’s recent political environment. This study aims to contribute to a better understanding of the patterns in the abstention rate of the last elections in Portugal. Sociological and economic variables such as age, unemployment rate, education level and many others will be used in trying to find out if they influence the abstention rate. It is logical to assume that the abstention rate in a certain municipality will be related to the abstention in neighboring municipalities. Therefore, the study also investigates if there is spatial autocorrelation in the abstention rates. Modeling a phenomenon like this with a simple linear regression model, estimated by Ordinary Least Squares (OLS), will render less efficient and biased results because of the spatial correlation of the observations and possible spatial clustering of values. Spatial regression methods have been proposed to overcome these drawbacks, particularly the Geographically Weighted Regression (GWR). This method will take into account possible local influences, allowing the coefficients of the model to vary depending on the geographic location, possibly obtaining a more appropriate fit. Many different OLS and GWR models were investigated by considering different combinations of explanatory variables and diagnosing their results through statistical tests and goodness-of-fit measures. Results show that indeed the data exhibits a non-random spatial pattern, and that a GWR model is a better approach in modeling abstention rates, when compared to an OLS model. Hence, the percentage of voter turnout in a municipality is likely to be better modelled taking into account its geographic location.Costa, Ana Cristina Marinho daRUNMota, Afonso Manita Santos2019-03-29T17:36:56Z2019-03-152019-03-15T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/64940TID:202208214enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:30:52Zoai:run.unl.pt:10362/64940Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:34:13.917802Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Modelling abstention rate using spatial regression |
title |
Modelling abstention rate using spatial regression |
spellingShingle |
Modelling abstention rate using spatial regression Mota, Afonso Manita Santos Voter turnout Abstention rate Sociological Variables Economic Variables Spatial Analysis Geographically Weighted Regression Spatial Non-Stationarity |
title_short |
Modelling abstention rate using spatial regression |
title_full |
Modelling abstention rate using spatial regression |
title_fullStr |
Modelling abstention rate using spatial regression |
title_full_unstemmed |
Modelling abstention rate using spatial regression |
title_sort |
Modelling abstention rate using spatial regression |
author |
Mota, Afonso Manita Santos |
author_facet |
Mota, Afonso Manita Santos |
author_role |
author |
dc.contributor.none.fl_str_mv |
Costa, Ana Cristina Marinho da RUN |
dc.contributor.author.fl_str_mv |
Mota, Afonso Manita Santos |
dc.subject.por.fl_str_mv |
Voter turnout Abstention rate Sociological Variables Economic Variables Spatial Analysis Geographically Weighted Regression Spatial Non-Stationarity |
topic |
Voter turnout Abstention rate Sociological Variables Economic Variables Spatial Analysis Geographically Weighted Regression Spatial Non-Stationarity |
description |
Dissertation presented as the partial requirement for obtaining a Master's degree in Statistics and Information Management, specialization in Information Analysis and Management |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-03-29T17:36:56Z 2019-03-15 2019-03-15T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/64940 TID:202208214 |
url |
http://hdl.handle.net/10362/64940 |
identifier_str_mv |
TID:202208214 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137963680989184 |