On the corners of certain determinantal ranges

Detalhes bibliográficos
Autor(a) principal: Kovačec, Alexander
Data de Publicação: 2007
Outros Autores: Bebiano, Natália, Providência, João da
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/4598
https://doi.org/10.1016/j.laa.2007.04.010
Resumo: Let A be a complex n×n matrix and let SO(n) be the group of real orthogonal matrices of determinant one. Define [Delta](A)={det(AoQ):Q[set membership, variant]SO(n)}, where o denotes the Hadamard product of matrices. For a permutation [sigma] on {1,...,n}, define It is shown that if the equation z[sigma]=det(AoQ) has in SO(n) only the obvious solutions (Q=([epsilon]i[delta][sigma]i,j), [epsilon]i=±1 such that [epsilon]1...[epsilon]n=sgn[sigma]), then the local shape of [Delta](A) in a vicinity of z[sigma] resembles a truncated cone whose opening angle equals , where [sigma]1, [sigma]2 differ from [sigma] by transpositions. This lends further credibility to the well known de Oliveira Marcus Conjecture (OMC) concerning the determinant of the sum of normal n×n matrices. We deduce the mentioned fact from a general result concerning multivariate power series and also use some elementary algebraic topology.
id RCAP_6a8136908d42e3a901bcd0dda8abd1bf
oai_identifier_str oai:estudogeral.uc.pt:10316/4598
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling On the corners of certain determinantal rangesDeterminantal rangeHadamard productPower seriesCornersOliveira Marcus ConjectureLet A be a complex n×n matrix and let SO(n) be the group of real orthogonal matrices of determinant one. Define [Delta](A)={det(AoQ):Q[set membership, variant]SO(n)}, where o denotes the Hadamard product of matrices. For a permutation [sigma] on {1,...,n}, define It is shown that if the equation z[sigma]=det(AoQ) has in SO(n) only the obvious solutions (Q=([epsilon]i[delta][sigma]i,j), [epsilon]i=±1 such that [epsilon]1...[epsilon]n=sgn[sigma]), then the local shape of [Delta](A) in a vicinity of z[sigma] resembles a truncated cone whose opening angle equals , where [sigma]1, [sigma]2 differ from [sigma] by transpositions. This lends further credibility to the well known de Oliveira Marcus Conjecture (OMC) concerning the determinant of the sum of normal n×n matrices. We deduce the mentioned fact from a general result concerning multivariate power series and also use some elementary algebraic topology.http://www.sciencedirect.com/science/article/B6V0R-4NJG44V-3/1/29cc71d6352bcfea422c3dc7beebcbce2007info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleaplication/PDFhttp://hdl.handle.net/10316/4598http://hdl.handle.net/10316/4598https://doi.org/10.1016/j.laa.2007.04.010engLinear Algebra and its Applications. 426:1 (2007) 96-108Kovačec, AlexanderBebiano, NatáliaProvidência, João dainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2020-11-06T16:49:13Zoai:estudogeral.uc.pt:10316/4598Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:00:47.502781Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv On the corners of certain determinantal ranges
title On the corners of certain determinantal ranges
spellingShingle On the corners of certain determinantal ranges
Kovačec, Alexander
Determinantal range
Hadamard product
Power series
Corners
Oliveira Marcus Conjecture
title_short On the corners of certain determinantal ranges
title_full On the corners of certain determinantal ranges
title_fullStr On the corners of certain determinantal ranges
title_full_unstemmed On the corners of certain determinantal ranges
title_sort On the corners of certain determinantal ranges
author Kovačec, Alexander
author_facet Kovačec, Alexander
Bebiano, Natália
Providência, João da
author_role author
author2 Bebiano, Natália
Providência, João da
author2_role author
author
dc.contributor.author.fl_str_mv Kovačec, Alexander
Bebiano, Natália
Providência, João da
dc.subject.por.fl_str_mv Determinantal range
Hadamard product
Power series
Corners
Oliveira Marcus Conjecture
topic Determinantal range
Hadamard product
Power series
Corners
Oliveira Marcus Conjecture
description Let A be a complex n×n matrix and let SO(n) be the group of real orthogonal matrices of determinant one. Define [Delta](A)={det(AoQ):Q[set membership, variant]SO(n)}, where o denotes the Hadamard product of matrices. For a permutation [sigma] on {1,...,n}, define It is shown that if the equation z[sigma]=det(AoQ) has in SO(n) only the obvious solutions (Q=([epsilon]i[delta][sigma]i,j), [epsilon]i=±1 such that [epsilon]1...[epsilon]n=sgn[sigma]), then the local shape of [Delta](A) in a vicinity of z[sigma] resembles a truncated cone whose opening angle equals , where [sigma]1, [sigma]2 differ from [sigma] by transpositions. This lends further credibility to the well known de Oliveira Marcus Conjecture (OMC) concerning the determinant of the sum of normal n×n matrices. We deduce the mentioned fact from a general result concerning multivariate power series and also use some elementary algebraic topology.
publishDate 2007
dc.date.none.fl_str_mv 2007
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/4598
http://hdl.handle.net/10316/4598
https://doi.org/10.1016/j.laa.2007.04.010
url http://hdl.handle.net/10316/4598
https://doi.org/10.1016/j.laa.2007.04.010
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Linear Algebra and its Applications. 426:1 (2007) 96-108
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv aplication/PDF
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133898406363137