On the corners of certain determinantal ranges
Autor(a) principal: | |
---|---|
Data de Publicação: | 2007 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/4598 https://doi.org/10.1016/j.laa.2007.04.010 |
Resumo: | Let A be a complex n×n matrix and let SO(n) be the group of real orthogonal matrices of determinant one. Define [Delta](A)={det(AoQ):Q[set membership, variant]SO(n)}, where o denotes the Hadamard product of matrices. For a permutation [sigma] on {1,...,n}, define It is shown that if the equation z[sigma]=det(AoQ) has in SO(n) only the obvious solutions (Q=([epsilon]i[delta][sigma]i,j), [epsilon]i=±1 such that [epsilon]1...[epsilon]n=sgn[sigma]), then the local shape of [Delta](A) in a vicinity of z[sigma] resembles a truncated cone whose opening angle equals , where [sigma]1, [sigma]2 differ from [sigma] by transpositions. This lends further credibility to the well known de Oliveira Marcus Conjecture (OMC) concerning the determinant of the sum of normal n×n matrices. We deduce the mentioned fact from a general result concerning multivariate power series and also use some elementary algebraic topology. |
id |
RCAP_6a8136908d42e3a901bcd0dda8abd1bf |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/4598 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
On the corners of certain determinantal rangesDeterminantal rangeHadamard productPower seriesCornersOliveira Marcus ConjectureLet A be a complex n×n matrix and let SO(n) be the group of real orthogonal matrices of determinant one. Define [Delta](A)={det(AoQ):Q[set membership, variant]SO(n)}, where o denotes the Hadamard product of matrices. For a permutation [sigma] on {1,...,n}, define It is shown that if the equation z[sigma]=det(AoQ) has in SO(n) only the obvious solutions (Q=([epsilon]i[delta][sigma]i,j), [epsilon]i=±1 such that [epsilon]1...[epsilon]n=sgn[sigma]), then the local shape of [Delta](A) in a vicinity of z[sigma] resembles a truncated cone whose opening angle equals , where [sigma]1, [sigma]2 differ from [sigma] by transpositions. This lends further credibility to the well known de Oliveira Marcus Conjecture (OMC) concerning the determinant of the sum of normal n×n matrices. We deduce the mentioned fact from a general result concerning multivariate power series and also use some elementary algebraic topology.http://www.sciencedirect.com/science/article/B6V0R-4NJG44V-3/1/29cc71d6352bcfea422c3dc7beebcbce2007info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleaplication/PDFhttp://hdl.handle.net/10316/4598http://hdl.handle.net/10316/4598https://doi.org/10.1016/j.laa.2007.04.010engLinear Algebra and its Applications. 426:1 (2007) 96-108Kovačec, AlexanderBebiano, NatáliaProvidência, João dainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2020-11-06T16:49:13Zoai:estudogeral.uc.pt:10316/4598Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:00:47.502781Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
On the corners of certain determinantal ranges |
title |
On the corners of certain determinantal ranges |
spellingShingle |
On the corners of certain determinantal ranges Kovačec, Alexander Determinantal range Hadamard product Power series Corners Oliveira Marcus Conjecture |
title_short |
On the corners of certain determinantal ranges |
title_full |
On the corners of certain determinantal ranges |
title_fullStr |
On the corners of certain determinantal ranges |
title_full_unstemmed |
On the corners of certain determinantal ranges |
title_sort |
On the corners of certain determinantal ranges |
author |
Kovačec, Alexander |
author_facet |
Kovačec, Alexander Bebiano, Natália Providência, João da |
author_role |
author |
author2 |
Bebiano, Natália Providência, João da |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Kovačec, Alexander Bebiano, Natália Providência, João da |
dc.subject.por.fl_str_mv |
Determinantal range Hadamard product Power series Corners Oliveira Marcus Conjecture |
topic |
Determinantal range Hadamard product Power series Corners Oliveira Marcus Conjecture |
description |
Let A be a complex n×n matrix and let SO(n) be the group of real orthogonal matrices of determinant one. Define [Delta](A)={det(AoQ):Q[set membership, variant]SO(n)}, where o denotes the Hadamard product of matrices. For a permutation [sigma] on {1,...,n}, define It is shown that if the equation z[sigma]=det(AoQ) has in SO(n) only the obvious solutions (Q=([epsilon]i[delta][sigma]i,j), [epsilon]i=±1 such that [epsilon]1...[epsilon]n=sgn[sigma]), then the local shape of [Delta](A) in a vicinity of z[sigma] resembles a truncated cone whose opening angle equals , where [sigma]1, [sigma]2 differ from [sigma] by transpositions. This lends further credibility to the well known de Oliveira Marcus Conjecture (OMC) concerning the determinant of the sum of normal n×n matrices. We deduce the mentioned fact from a general result concerning multivariate power series and also use some elementary algebraic topology. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/4598 http://hdl.handle.net/10316/4598 https://doi.org/10.1016/j.laa.2007.04.010 |
url |
http://hdl.handle.net/10316/4598 https://doi.org/10.1016/j.laa.2007.04.010 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Linear Algebra and its Applications. 426:1 (2007) 96-108 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
aplication/PDF |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133898406363137 |