Development of ZnO components for Flash sintering at low temperatures

Detalhes bibliográficos
Autor(a) principal: Ferreira, Nuno Gonçalo
Data de Publicação: 2018
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/29488
Resumo: Flash sintering is a non-conventional sintering method proposed in 2010. Flash combines the use of electric field and temperature to promote densification of materials in seconds (<60 s) at lowered temperatures. The Flash temperature (Tf) is defined as the temperature at which the power supply switches from voltage to current control mode and sintering starts. The combination of the electric field and furnace atmosphere during Flash experiments gives a possibility to significantly decrease Tf of ZnO among other materials. Conventional sintering temperature of pure ZnO is close to 1200 ºC, while the use of a water assisted Flash sintered apparatus allows the densification of ZnO to occur at room temperature. However, a comprehensive study of the water role and the effect of other atmospheres on the Flash sintering of ZnO is yet missing. In the present work, the influence of such atmospheres as air, argon (Ar), and nitrogen/hydrogen mixture (N2/H2) on Flash sintering of pure ZnO is studied with and without water.. So far, it is possible to Flash sinter ZnO between 25 and 30 ºC using wet Ar and N2/H2, respectively. However, without the water vapour, the Flash temperature increases to 100 ºC in Ar and 144 ºC in N2/H2, highlighting the important role of the water in the ZnO conductivity and defect chemistry, which directly influences the value of Tf and the microstructural evolution in the Flash sintering. The influence of doping ZnO with Al both on the onset temperature of Flash sintering and on the microstructure of the sintered pellets is also studied under the conditions previously used for undoped ZnO. In addition, an energetic sustainability study of Flash sintered commercial alumina, Rapox Brown from Rauschert, is presented as a result of a partnership between the University of Aveiro and Rauschert Portuguesa.
id RCAP_6aa9a259b84a1dccdf7a19970fc75cb2
oai_identifier_str oai:ria.ua.pt:10773/29488
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Development of ZnO components for Flash sintering at low temperaturesZnOAl-doped ZnOFlash sinteringMicrostructureElectrical conductivityFlash sintering is a non-conventional sintering method proposed in 2010. Flash combines the use of electric field and temperature to promote densification of materials in seconds (<60 s) at lowered temperatures. The Flash temperature (Tf) is defined as the temperature at which the power supply switches from voltage to current control mode and sintering starts. The combination of the electric field and furnace atmosphere during Flash experiments gives a possibility to significantly decrease Tf of ZnO among other materials. Conventional sintering temperature of pure ZnO is close to 1200 ºC, while the use of a water assisted Flash sintered apparatus allows the densification of ZnO to occur at room temperature. However, a comprehensive study of the water role and the effect of other atmospheres on the Flash sintering of ZnO is yet missing. In the present work, the influence of such atmospheres as air, argon (Ar), and nitrogen/hydrogen mixture (N2/H2) on Flash sintering of pure ZnO is studied with and without water.. So far, it is possible to Flash sinter ZnO between 25 and 30 ºC using wet Ar and N2/H2, respectively. However, without the water vapour, the Flash temperature increases to 100 ºC in Ar and 144 ºC in N2/H2, highlighting the important role of the water in the ZnO conductivity and defect chemistry, which directly influences the value of Tf and the microstructural evolution in the Flash sintering. The influence of doping ZnO with Al both on the onset temperature of Flash sintering and on the microstructure of the sintered pellets is also studied under the conditions previously used for undoped ZnO. In addition, an energetic sustainability study of Flash sintered commercial alumina, Rapox Brown from Rauschert, is presented as a result of a partnership between the University of Aveiro and Rauschert Portuguesa.Sinterização Flash é uma técnica não convencional de sinterização proposta em 2010. Flash combina o uso de um campo elétrico e de temperatura de forma a sintetizar um material em menos de 60 s e a temperaturas mais baixas aquelas a que tem de ser sujeito quando sinterizado convencionalmente. A temperatura de Flash (Tf) é definida como aquela aquando se dá a troca de modo voltagem para modo amperagem e a sinterização é iniciada. A combinação de um campo elétrico e uma atmosfera controlada dentro de um forno durante o Flash abre portas para o decréscimo da Tf de ZnO, entre outros. ZnO, normalmente, é sinterizado a temperaturas próximas de 1200 ºC, no entanto com o uso de vapor de água este é possível ser feito à temperatura ambiente. No entanto, um estudo aprofundado ainda não foi feito do papel deste elemento e de outras atmosferas na temperatura e morfologia das amostras aquando sinterizadas por Flash. No presente trabalho, a influência de diferentes atmosferas, tal como air, árgon (Ar) e azoto/hidrogénio (N2/H2) na sinterização Flash do ZnO com e sem vapor de água.. Até ao momento, foi possível sinterizar ZnO, usando Flash, a temperaturas entre 25 (Ar) e 30ºC (N2/H2) usando vapor de água, no entanto, sem vapor de água estas temperaturas aumentam para 100 ºC em Ar e 144 ºC em N2/H2. Isto realça a importância da água na condutividade e na química de defeitos que influenciará diretamente a Tf e a evolução microestrutural durante o processo de sinterização. ZnO foi dopando com Al (AZO) e foi estudada a sua influência a nível da temperatura de Flash e, ainda, as alterações a nível microestrutural. As condições usadas para sinterizar os AZO’s foram as mesmas que para o ZnO puro. Por fim, foi feito um estudo de sustentabilidade energética da sinterização Flash numa parceria entre a Rauschert Portuguesa e a Universidade de Aveiro. Para isso, foi sinterizada uma alumina comercial, Rapox Brown.2018-122018-12-01T00:00:00Z2019-10-30T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/29488TID:202233405engFerreira, Nuno Gonçaloinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:57:04Zoai:ria.ua.pt:10773/29488Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:01:49.303928Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Development of ZnO components for Flash sintering at low temperatures
title Development of ZnO components for Flash sintering at low temperatures
spellingShingle Development of ZnO components for Flash sintering at low temperatures
Ferreira, Nuno Gonçalo
ZnO
Al-doped ZnO
Flash sintering
Microstructure
Electrical conductivity
title_short Development of ZnO components for Flash sintering at low temperatures
title_full Development of ZnO components for Flash sintering at low temperatures
title_fullStr Development of ZnO components for Flash sintering at low temperatures
title_full_unstemmed Development of ZnO components for Flash sintering at low temperatures
title_sort Development of ZnO components for Flash sintering at low temperatures
author Ferreira, Nuno Gonçalo
author_facet Ferreira, Nuno Gonçalo
author_role author
dc.contributor.author.fl_str_mv Ferreira, Nuno Gonçalo
dc.subject.por.fl_str_mv ZnO
Al-doped ZnO
Flash sintering
Microstructure
Electrical conductivity
topic ZnO
Al-doped ZnO
Flash sintering
Microstructure
Electrical conductivity
description Flash sintering is a non-conventional sintering method proposed in 2010. Flash combines the use of electric field and temperature to promote densification of materials in seconds (<60 s) at lowered temperatures. The Flash temperature (Tf) is defined as the temperature at which the power supply switches from voltage to current control mode and sintering starts. The combination of the electric field and furnace atmosphere during Flash experiments gives a possibility to significantly decrease Tf of ZnO among other materials. Conventional sintering temperature of pure ZnO is close to 1200 ºC, while the use of a water assisted Flash sintered apparatus allows the densification of ZnO to occur at room temperature. However, a comprehensive study of the water role and the effect of other atmospheres on the Flash sintering of ZnO is yet missing. In the present work, the influence of such atmospheres as air, argon (Ar), and nitrogen/hydrogen mixture (N2/H2) on Flash sintering of pure ZnO is studied with and without water.. So far, it is possible to Flash sinter ZnO between 25 and 30 ºC using wet Ar and N2/H2, respectively. However, without the water vapour, the Flash temperature increases to 100 ºC in Ar and 144 ºC in N2/H2, highlighting the important role of the water in the ZnO conductivity and defect chemistry, which directly influences the value of Tf and the microstructural evolution in the Flash sintering. The influence of doping ZnO with Al both on the onset temperature of Flash sintering and on the microstructure of the sintered pellets is also studied under the conditions previously used for undoped ZnO. In addition, an energetic sustainability study of Flash sintered commercial alumina, Rapox Brown from Rauschert, is presented as a result of a partnership between the University of Aveiro and Rauschert Portuguesa.
publishDate 2018
dc.date.none.fl_str_mv 2018-12
2018-12-01T00:00:00Z
2019-10-30T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/29488
TID:202233405
url http://hdl.handle.net/10773/29488
identifier_str_mv TID:202233405
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137673981460480