Species specificity of bacteria associated to the brown seaweeds Lobophora (Dictyotales, Phaeophyceae) and their potential for Induction of rapid coral bleaching in Acropora muricata

Detalhes bibliográficos
Autor(a) principal: Vieira, Christophe
Data de Publicação: 2009
Outros Autores: Engelen, Aschwin H., Guentas, Linda, Aires, Tânia, Houlbreque, Fanny, Gaubert, Julie, Serrao, Ester A., De Clerck, Olivier, Payri, Claude E.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.1/11769
Resumo: While reef degradation is occurring worldwide, it is not uncommon to see phase shifts from coral to macroalgal dominated reefs. Numerous studies have addressed the mechanisms by which macroalgae may outcompete corals and a few recent studies highlighted the putative role of bacteria at the interface between macroalgae and corals. Some studies suggest that macroalgae may act as vectors and/or foster proliferation of microorganisms pathogenic for corals. Using a combination of high throughput sequencing, bacterial culturing, and in situ bioassays we question if the adversity of macroalgal associated bacteria to corals is mediated by specific bacterial taxa. Using Illumina sequencing, we characterized and compared the bacterial community from two Lobophora (Dictyotales, Phaeophyceae) species. The two species presented distinctive bacterial communities. Both species shared approximately half of their OTUs, mainly the most abundant bacteria. Species-specific OTUs belong to Planctomycetes, Proteobacteria, and Bacteroidetes. In total, 16 culturable bacterial strain were isolated and identified from the Lobophora surface, consisting of 10 genera (from nine families, four classes, and three phyla), some of which are not known as, but are related to pathogens involved in coral diseases, and others are naturally associated to corals. When patches of marine agar with 24 h cultures of each of these bacteria were placed in direct contact with the branches of the scleractinian coral Acropora muricata, they caused severe bleaching after 24 h exposure. Results suggest that regardless of taxonomic affinities, increase in density of these bacteria can be adverse to corals. Nevertheless, the microbial community associated to macroalgal surface may not represent a threat to corals, because the specific bacterial screening and control exerted by the alga preventing specific bacterial proliferation.
id RCAP_6b4612e1de17ac106773393e2bc182a9
oai_identifier_str oai:sapientia.ualg.pt:10400.1/11769
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Species specificity of bacteria associated to the brown seaweeds Lobophora (Dictyotales, Phaeophyceae) and their potential for Induction of rapid coral bleaching in Acropora muricataPhylogenetic characterizationMontastraea-AnnularisHard coralAlgaeReefCompetitionDiversityVariegataCommunitiesHerbivoryWhile reef degradation is occurring worldwide, it is not uncommon to see phase shifts from coral to macroalgal dominated reefs. Numerous studies have addressed the mechanisms by which macroalgae may outcompete corals and a few recent studies highlighted the putative role of bacteria at the interface between macroalgae and corals. Some studies suggest that macroalgae may act as vectors and/or foster proliferation of microorganisms pathogenic for corals. Using a combination of high throughput sequencing, bacterial culturing, and in situ bioassays we question if the adversity of macroalgal associated bacteria to corals is mediated by specific bacterial taxa. Using Illumina sequencing, we characterized and compared the bacterial community from two Lobophora (Dictyotales, Phaeophyceae) species. The two species presented distinctive bacterial communities. Both species shared approximately half of their OTUs, mainly the most abundant bacteria. Species-specific OTUs belong to Planctomycetes, Proteobacteria, and Bacteroidetes. In total, 16 culturable bacterial strain were isolated and identified from the Lobophora surface, consisting of 10 genera (from nine families, four classes, and three phyla), some of which are not known as, but are related to pathogens involved in coral diseases, and others are naturally associated to corals. When patches of marine agar with 24 h cultures of each of these bacteria were placed in direct contact with the branches of the scleractinian coral Acropora muricata, they caused severe bleaching after 24 h exposure. Results suggest that regardless of taxonomic affinities, increase in density of these bacteria can be adverse to corals. Nevertheless, the microbial community associated to macroalgal surface may not represent a threat to corals, because the specific bacterial screening and control exerted by the alga preventing specific bacterial proliferation.UIVIR ENTROPIE (UR, IRD, CNRS); postdoctoral fellowship of Portuguese National Science Foundation (Fundacao para a Ciencia e a Tecnologia, FCT) [SFRH/BPD/63703/2009, SFRH/BPD/107878/2015]; FCT program [UlD/IVItilti/04326/2013]Frontiers Media SaSapientiaVieira, ChristopheEngelen, Aschwin H.Guentas, LindaAires, TâniaHoulbreque, FannyGaubert, JulieSerrao, Ester A.De Clerck, OlivierPayri, Claude E.2018-12-07T14:57:55Z2009-112009-11-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.1/11769eng1664-302X10.3389/fmicb.2016.00316info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-24T10:23:37Zoai:sapientia.ualg.pt:10400.1/11769Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:03:13.670570Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Species specificity of bacteria associated to the brown seaweeds Lobophora (Dictyotales, Phaeophyceae) and their potential for Induction of rapid coral bleaching in Acropora muricata
title Species specificity of bacteria associated to the brown seaweeds Lobophora (Dictyotales, Phaeophyceae) and their potential for Induction of rapid coral bleaching in Acropora muricata
spellingShingle Species specificity of bacteria associated to the brown seaweeds Lobophora (Dictyotales, Phaeophyceae) and their potential for Induction of rapid coral bleaching in Acropora muricata
Vieira, Christophe
Phylogenetic characterization
Montastraea-Annularis
Hard coral
Algae
Reef
Competition
Diversity
Variegata
Communities
Herbivory
title_short Species specificity of bacteria associated to the brown seaweeds Lobophora (Dictyotales, Phaeophyceae) and their potential for Induction of rapid coral bleaching in Acropora muricata
title_full Species specificity of bacteria associated to the brown seaweeds Lobophora (Dictyotales, Phaeophyceae) and their potential for Induction of rapid coral bleaching in Acropora muricata
title_fullStr Species specificity of bacteria associated to the brown seaweeds Lobophora (Dictyotales, Phaeophyceae) and their potential for Induction of rapid coral bleaching in Acropora muricata
title_full_unstemmed Species specificity of bacteria associated to the brown seaweeds Lobophora (Dictyotales, Phaeophyceae) and their potential for Induction of rapid coral bleaching in Acropora muricata
title_sort Species specificity of bacteria associated to the brown seaweeds Lobophora (Dictyotales, Phaeophyceae) and their potential for Induction of rapid coral bleaching in Acropora muricata
author Vieira, Christophe
author_facet Vieira, Christophe
Engelen, Aschwin H.
Guentas, Linda
Aires, Tânia
Houlbreque, Fanny
Gaubert, Julie
Serrao, Ester A.
De Clerck, Olivier
Payri, Claude E.
author_role author
author2 Engelen, Aschwin H.
Guentas, Linda
Aires, Tânia
Houlbreque, Fanny
Gaubert, Julie
Serrao, Ester A.
De Clerck, Olivier
Payri, Claude E.
author2_role author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Sapientia
dc.contributor.author.fl_str_mv Vieira, Christophe
Engelen, Aschwin H.
Guentas, Linda
Aires, Tânia
Houlbreque, Fanny
Gaubert, Julie
Serrao, Ester A.
De Clerck, Olivier
Payri, Claude E.
dc.subject.por.fl_str_mv Phylogenetic characterization
Montastraea-Annularis
Hard coral
Algae
Reef
Competition
Diversity
Variegata
Communities
Herbivory
topic Phylogenetic characterization
Montastraea-Annularis
Hard coral
Algae
Reef
Competition
Diversity
Variegata
Communities
Herbivory
description While reef degradation is occurring worldwide, it is not uncommon to see phase shifts from coral to macroalgal dominated reefs. Numerous studies have addressed the mechanisms by which macroalgae may outcompete corals and a few recent studies highlighted the putative role of bacteria at the interface between macroalgae and corals. Some studies suggest that macroalgae may act as vectors and/or foster proliferation of microorganisms pathogenic for corals. Using a combination of high throughput sequencing, bacterial culturing, and in situ bioassays we question if the adversity of macroalgal associated bacteria to corals is mediated by specific bacterial taxa. Using Illumina sequencing, we characterized and compared the bacterial community from two Lobophora (Dictyotales, Phaeophyceae) species. The two species presented distinctive bacterial communities. Both species shared approximately half of their OTUs, mainly the most abundant bacteria. Species-specific OTUs belong to Planctomycetes, Proteobacteria, and Bacteroidetes. In total, 16 culturable bacterial strain were isolated and identified from the Lobophora surface, consisting of 10 genera (from nine families, four classes, and three phyla), some of which are not known as, but are related to pathogens involved in coral diseases, and others are naturally associated to corals. When patches of marine agar with 24 h cultures of each of these bacteria were placed in direct contact with the branches of the scleractinian coral Acropora muricata, they caused severe bleaching after 24 h exposure. Results suggest that regardless of taxonomic affinities, increase in density of these bacteria can be adverse to corals. Nevertheless, the microbial community associated to macroalgal surface may not represent a threat to corals, because the specific bacterial screening and control exerted by the alga preventing specific bacterial proliferation.
publishDate 2009
dc.date.none.fl_str_mv 2009-11
2009-11-01T00:00:00Z
2018-12-07T14:57:55Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.1/11769
url http://hdl.handle.net/10400.1/11769
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1664-302X
10.3389/fmicb.2016.00316
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Frontiers Media Sa
publisher.none.fl_str_mv Frontiers Media Sa
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133266252398592