Linearization of Gevrey flows on T ͩ with a Brjuno type arithmetical condition
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.5/28897 |
Resumo: | We show that in the Gevrey topology, a d-torus flow close enough to linear with a unique rotation vector ω is linearizable as long as ω satisfies a novel Brjuno type diophantine condition. The proof is based on the fast convergence under renormalization of the associated Gevrey vector field. It requires a multidimensional continued fractions expansion of ω, and the corresponding characterization of the Brjuno type vectors. This demonstrates that renormalization methods deal very naturally with Gevrey regularity expressed in the decay of Fourier coefficients. In particular, they provide new linearization results including frequencies beyond diophantine in non-analytic topologies. |
id |
RCAP_6b96e025f2b67dfa2ceebfebbfe34d6e |
---|---|
oai_identifier_str |
oai:www.repository.utl.pt:10400.5/28897 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Linearization of Gevrey flows on T ͩ with a Brjuno type arithmetical conditionGevrey FlowsGevrey TopologyDiophantine ConditionBrjuno Type VectorsArithmetical ConditionWe show that in the Gevrey topology, a d-torus flow close enough to linear with a unique rotation vector ω is linearizable as long as ω satisfies a novel Brjuno type diophantine condition. The proof is based on the fast convergence under renormalization of the associated Gevrey vector field. It requires a multidimensional continued fractions expansion of ω, and the corresponding characterization of the Brjuno type vectors. This demonstrates that renormalization methods deal very naturally with Gevrey regularity expressed in the decay of Fourier coefficients. In particular, they provide new linearization results including frequencies beyond diophantine in non-analytic topologies.ElsevierRepositório da Universidade de LisboaDias, João LopesGalvão, João Pedro2023-10-06T09:09:37Z20192019-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.5/28897engDias, João Lopes and João Pedro Galvão .(2019). “Linearization of Gevrey flows on T ͩ with a Brjuno type arithmetical condition”. Journal of Differential Equations, Volume 267, No. 12: pp. 7167-7212 . (Search PDF in 2023).0022-0396doi.org/10.1016/j.jde.2019.07.020info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-10-22T01:31:59Zoai:www.repository.utl.pt:10400.5/28897Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:33:56.929934Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Linearization of Gevrey flows on T ͩ with a Brjuno type arithmetical condition |
title |
Linearization of Gevrey flows on T ͩ with a Brjuno type arithmetical condition |
spellingShingle |
Linearization of Gevrey flows on T ͩ with a Brjuno type arithmetical condition Dias, João Lopes Gevrey Flows Gevrey Topology Diophantine Condition Brjuno Type Vectors Arithmetical Condition |
title_short |
Linearization of Gevrey flows on T ͩ with a Brjuno type arithmetical condition |
title_full |
Linearization of Gevrey flows on T ͩ with a Brjuno type arithmetical condition |
title_fullStr |
Linearization of Gevrey flows on T ͩ with a Brjuno type arithmetical condition |
title_full_unstemmed |
Linearization of Gevrey flows on T ͩ with a Brjuno type arithmetical condition |
title_sort |
Linearization of Gevrey flows on T ͩ with a Brjuno type arithmetical condition |
author |
Dias, João Lopes |
author_facet |
Dias, João Lopes Galvão, João Pedro |
author_role |
author |
author2 |
Galvão, João Pedro |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Repositório da Universidade de Lisboa |
dc.contributor.author.fl_str_mv |
Dias, João Lopes Galvão, João Pedro |
dc.subject.por.fl_str_mv |
Gevrey Flows Gevrey Topology Diophantine Condition Brjuno Type Vectors Arithmetical Condition |
topic |
Gevrey Flows Gevrey Topology Diophantine Condition Brjuno Type Vectors Arithmetical Condition |
description |
We show that in the Gevrey topology, a d-torus flow close enough to linear with a unique rotation vector ω is linearizable as long as ω satisfies a novel Brjuno type diophantine condition. The proof is based on the fast convergence under renormalization of the associated Gevrey vector field. It requires a multidimensional continued fractions expansion of ω, and the corresponding characterization of the Brjuno type vectors. This demonstrates that renormalization methods deal very naturally with Gevrey regularity expressed in the decay of Fourier coefficients. In particular, they provide new linearization results including frequencies beyond diophantine in non-analytic topologies. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019 2019-01-01T00:00:00Z 2023-10-06T09:09:37Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.5/28897 |
url |
http://hdl.handle.net/10400.5/28897 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Dias, João Lopes and João Pedro Galvão .(2019). “Linearization of Gevrey flows on T ͩ with a Brjuno type arithmetical condition”. Journal of Differential Equations, Volume 267, No. 12: pp. 7167-7212 . (Search PDF in 2023). 0022-0396 doi.org/10.1016/j.jde.2019.07.020 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1817552456310063104 |