Sound and complete axiomatizations of coalgebraic language equivalence
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/35523 |
Resumo: | Coalgebras provide a uniform framework for studying dynamical systems, including several types of automata. In this article, we make use of the coalgebraic view on systems to investigate, in a uniform way, under which conditions calculi that are sound and complete with respect to behavioral equivalence can be extended to a coarser coalgebraic language equivalence, which arises from a generalized powerset construction that determinizes coalgebras. We show that soundness and completeness are established by proving that expressions modulo axioms of a calculus form the rational fixpoint of the given type functor. Our main result is that the rational fixpoint of the functor FT, where T is a monad describing the branching of the systems (e.g., non-determinism, weights, probability, etc.), has as a quotient the rational fixpoint of the determinized type functor F, a lifting of F to the category of T-algebras. We apply our framework to the concrete example of weighted automata, for which we present a new sound and complete calculus for weighted language equivalence. As a special case, we obtain nondeterministic automata in which we recover Rabinovich’s sound and complete calculus for language equivalence. |
id |
RCAP_6bcb4a79b4e9a229c880d38ef6676f06 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/35523 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Sound and complete axiomatizations of coalgebraic language equivalenceCoalgebraLanguageRegular expressionsTraceWeighted automataCoalgebras provide a uniform framework for studying dynamical systems, including several types of automata. In this article, we make use of the coalgebraic view on systems to investigate, in a uniform way, under which conditions calculi that are sound and complete with respect to behavioral equivalence can be extended to a coarser coalgebraic language equivalence, which arises from a generalized powerset construction that determinizes coalgebras. We show that soundness and completeness are established by proving that expressions modulo axioms of a calculus form the rational fixpoint of the given type functor. Our main result is that the rational fixpoint of the functor FT, where T is a monad describing the branching of the systems (e.g., non-determinism, weights, probability, etc.), has as a quotient the rational fixpoint of the determinized type functor F, a lifting of F to the category of T-algebras. We apply our framework to the concrete example of weighted automata, for which we present a new sound and complete calculus for weighted language equivalence. As a special case, we obtain nondeterministic automata in which we recover Rabinovich’s sound and complete calculus for language equivalence.ACMACMUniversidade do MinhoBonsangue, MarcelloMilius, StefanSilva, Alexandra M.20132013-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/35523eng10.1145/2422085.2422092info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T11:56:35Zoai:repositorium.sdum.uminho.pt:1822/35523Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T18:46:12.574057Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Sound and complete axiomatizations of coalgebraic language equivalence |
title |
Sound and complete axiomatizations of coalgebraic language equivalence |
spellingShingle |
Sound and complete axiomatizations of coalgebraic language equivalence Bonsangue, Marcello Coalgebra Language Regular expressions Trace Weighted automata |
title_short |
Sound and complete axiomatizations of coalgebraic language equivalence |
title_full |
Sound and complete axiomatizations of coalgebraic language equivalence |
title_fullStr |
Sound and complete axiomatizations of coalgebraic language equivalence |
title_full_unstemmed |
Sound and complete axiomatizations of coalgebraic language equivalence |
title_sort |
Sound and complete axiomatizations of coalgebraic language equivalence |
author |
Bonsangue, Marcello |
author_facet |
Bonsangue, Marcello Milius, Stefan Silva, Alexandra M. |
author_role |
author |
author2 |
Milius, Stefan Silva, Alexandra M. |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Bonsangue, Marcello Milius, Stefan Silva, Alexandra M. |
dc.subject.por.fl_str_mv |
Coalgebra Language Regular expressions Trace Weighted automata |
topic |
Coalgebra Language Regular expressions Trace Weighted automata |
description |
Coalgebras provide a uniform framework for studying dynamical systems, including several types of automata. In this article, we make use of the coalgebraic view on systems to investigate, in a uniform way, under which conditions calculi that are sound and complete with respect to behavioral equivalence can be extended to a coarser coalgebraic language equivalence, which arises from a generalized powerset construction that determinizes coalgebras. We show that soundness and completeness are established by proving that expressions modulo axioms of a calculus form the rational fixpoint of the given type functor. Our main result is that the rational fixpoint of the functor FT, where T is a monad describing the branching of the systems (e.g., non-determinism, weights, probability, etc.), has as a quotient the rational fixpoint of the determinized type functor F, a lifting of F to the category of T-algebras. We apply our framework to the concrete example of weighted automata, for which we present a new sound and complete calculus for weighted language equivalence. As a special case, we obtain nondeterministic automata in which we recover Rabinovich’s sound and complete calculus for language equivalence. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013 2013-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/35523 |
url |
http://hdl.handle.net/1822/35523 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1145/2422085.2422092 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
ACM ACM |
publisher.none.fl_str_mv |
ACM ACM |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132217573638144 |