Square Kilometre Array Science Data Challenge 1: analysis and results

Detalhes bibliográficos
Autor(a) principal: Bonaldi, A.
Data de Publicação: 2021
Outros Autores: T. An, Bruggen, M., Burkutean, S., Coelho, B., Goodarzi, H., Hartley, P., Sandhu, P. K., Wu, C., L. Yu, Haghighi, M. H. Zhoolideh, Antón, S., Bagheri, Z., Barbosa, D., Barraca, J. P., Bartashevich, D., Bergano, M., Bonato, M., Brand, J., Gasperin, F. de, Giannetti, A., Dodson, R., Jain, P., Jaiswal, S., B. Lao, B. Liu, Liuzzo, E., Y. Lu, Lukic, V., Maia, D., Marchili, N., Massardi, M., P. Mohan, Morgado, J. B., Panwar, M., Prabhakar, P., Ribeiro, V. A. R. M., Rygl, K. L. J., Ali, V. Sabz, Saremi, E., Schisano, E., Sheikhnezami, S., Sadr, A. Vafaei, Wong, A., Wong, O. I.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/40295
Resumo: As the largest radio telescope in the world, the Square Kilometre Array (SKA) will lead the next generation of radio astronomy. The feats of engineering required to construct the telescope array will be matched only by the techniques developed to exploit the rich scientific value of the data. To drive forward the development of efficient and accurate analysis methods, we are designing a series of data challenges that will provide the scientific community with high-quality datasets for testing and evaluating new techniques. In this paper we present a description and results from the first such Science Data Challenge (SDC1). Based on SKA MID continuum simulated observations and covering three frequencies (560 MHz, 1400MHz and 9200 MHz) at three depths (8 h, 100 h and 1000 h), SDC1 asked participants to apply source detection, characterization and classification methods to simulated data. The challenge opened in November 2018, with nine teams submitting results by the deadline of April 2019. In this work we analyse the results for 8 of those teams, showcasing the variety of approaches that can be successfully used to find, characterise and classify sources in a deep, crowded field. The results also demonstrate the importance of building domain knowledge and expertise on this kind of analysis to obtain the best performance. As high-resolution observations begin revealing the true complexity of the sky, one of the outstanding challenges emerging from this analysis is the ability to deal with highly resolved and complex sources as effectively as the unresolved source population.
id RCAP_6d6c3372cc078e35088d0ab06b04e837
oai_identifier_str oai:ria.ua.pt:10773/40295
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Square Kilometre Array Science Data Challenge 1: analysis and resultsMethods: data analysisTechniques: image processingAstronomical data bases: miscellaneousGalaxies: statisticsRadio continuum: galaxiesAs the largest radio telescope in the world, the Square Kilometre Array (SKA) will lead the next generation of radio astronomy. The feats of engineering required to construct the telescope array will be matched only by the techniques developed to exploit the rich scientific value of the data. To drive forward the development of efficient and accurate analysis methods, we are designing a series of data challenges that will provide the scientific community with high-quality datasets for testing and evaluating new techniques. In this paper we present a description and results from the first such Science Data Challenge (SDC1). Based on SKA MID continuum simulated observations and covering three frequencies (560 MHz, 1400MHz and 9200 MHz) at three depths (8 h, 100 h and 1000 h), SDC1 asked participants to apply source detection, characterization and classification methods to simulated data. The challenge opened in November 2018, with nine teams submitting results by the deadline of April 2019. In this work we analyse the results for 8 of those teams, showcasing the variety of approaches that can be successfully used to find, characterise and classify sources in a deep, crowded field. The results also demonstrate the importance of building domain knowledge and expertise on this kind of analysis to obtain the best performance. As high-resolution observations begin revealing the true complexity of the sky, one of the outstanding challenges emerging from this analysis is the ability to deal with highly resolved and complex sources as effectively as the unresolved source population.Oxford University Press2024-01-25T17:11:31Z2021-01-01T00:00:00Z2021-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/40295eng0035-871110.1093/mnras/staa3023Bonaldi, A.T. AnBruggen, M.Burkutean, S.Coelho, B.Goodarzi, H.Hartley, P.Sandhu, P. K.Wu, C.L. YuHaghighi, M. H. ZhoolidehAntón, S.Bagheri, Z.Barbosa, D.Barraca, J. P.Bartashevich, D.Bergano, M.Bonato, M.Brand, J.Gasperin, F. deGiannetti, A.Dodson, R.Jain, P.Jaiswal, S.B. LaoB. LiuLiuzzo, E.Y. LuLukic, V.Maia, D.Marchili, N.Massardi, M.P. MohanMorgado, J. B.Panwar, M.Prabhakar, P.Ribeiro, V. A. R. M.Rygl, K. L. J.Ali, V. SabzSaremi, E.Schisano, E.Sheikhnezami, S.Sadr, A. VafaeiWong, A.Wong, O. I.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:18:25Zoai:ria.ua.pt:10773/40295Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:10:11.648746Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Square Kilometre Array Science Data Challenge 1: analysis and results
title Square Kilometre Array Science Data Challenge 1: analysis and results
spellingShingle Square Kilometre Array Science Data Challenge 1: analysis and results
Bonaldi, A.
Methods: data analysis
Techniques: image processing
Astronomical data bases: miscellaneous
Galaxies: statistics
Radio continuum: galaxies
title_short Square Kilometre Array Science Data Challenge 1: analysis and results
title_full Square Kilometre Array Science Data Challenge 1: analysis and results
title_fullStr Square Kilometre Array Science Data Challenge 1: analysis and results
title_full_unstemmed Square Kilometre Array Science Data Challenge 1: analysis and results
title_sort Square Kilometre Array Science Data Challenge 1: analysis and results
author Bonaldi, A.
author_facet Bonaldi, A.
T. An
Bruggen, M.
Burkutean, S.
Coelho, B.
Goodarzi, H.
Hartley, P.
Sandhu, P. K.
Wu, C.
L. Yu
Haghighi, M. H. Zhoolideh
Antón, S.
Bagheri, Z.
Barbosa, D.
Barraca, J. P.
Bartashevich, D.
Bergano, M.
Bonato, M.
Brand, J.
Gasperin, F. de
Giannetti, A.
Dodson, R.
Jain, P.
Jaiswal, S.
B. Lao
B. Liu
Liuzzo, E.
Y. Lu
Lukic, V.
Maia, D.
Marchili, N.
Massardi, M.
P. Mohan
Morgado, J. B.
Panwar, M.
Prabhakar, P.
Ribeiro, V. A. R. M.
Rygl, K. L. J.
Ali, V. Sabz
Saremi, E.
Schisano, E.
Sheikhnezami, S.
Sadr, A. Vafaei
Wong, A.
Wong, O. I.
author_role author
author2 T. An
Bruggen, M.
Burkutean, S.
Coelho, B.
Goodarzi, H.
Hartley, P.
Sandhu, P. K.
Wu, C.
L. Yu
Haghighi, M. H. Zhoolideh
Antón, S.
Bagheri, Z.
Barbosa, D.
Barraca, J. P.
Bartashevich, D.
Bergano, M.
Bonato, M.
Brand, J.
Gasperin, F. de
Giannetti, A.
Dodson, R.
Jain, P.
Jaiswal, S.
B. Lao
B. Liu
Liuzzo, E.
Y. Lu
Lukic, V.
Maia, D.
Marchili, N.
Massardi, M.
P. Mohan
Morgado, J. B.
Panwar, M.
Prabhakar, P.
Ribeiro, V. A. R. M.
Rygl, K. L. J.
Ali, V. Sabz
Saremi, E.
Schisano, E.
Sheikhnezami, S.
Sadr, A. Vafaei
Wong, A.
Wong, O. I.
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Bonaldi, A.
T. An
Bruggen, M.
Burkutean, S.
Coelho, B.
Goodarzi, H.
Hartley, P.
Sandhu, P. K.
Wu, C.
L. Yu
Haghighi, M. H. Zhoolideh
Antón, S.
Bagheri, Z.
Barbosa, D.
Barraca, J. P.
Bartashevich, D.
Bergano, M.
Bonato, M.
Brand, J.
Gasperin, F. de
Giannetti, A.
Dodson, R.
Jain, P.
Jaiswal, S.
B. Lao
B. Liu
Liuzzo, E.
Y. Lu
Lukic, V.
Maia, D.
Marchili, N.
Massardi, M.
P. Mohan
Morgado, J. B.
Panwar, M.
Prabhakar, P.
Ribeiro, V. A. R. M.
Rygl, K. L. J.
Ali, V. Sabz
Saremi, E.
Schisano, E.
Sheikhnezami, S.
Sadr, A. Vafaei
Wong, A.
Wong, O. I.
dc.subject.por.fl_str_mv Methods: data analysis
Techniques: image processing
Astronomical data bases: miscellaneous
Galaxies: statistics
Radio continuum: galaxies
topic Methods: data analysis
Techniques: image processing
Astronomical data bases: miscellaneous
Galaxies: statistics
Radio continuum: galaxies
description As the largest radio telescope in the world, the Square Kilometre Array (SKA) will lead the next generation of radio astronomy. The feats of engineering required to construct the telescope array will be matched only by the techniques developed to exploit the rich scientific value of the data. To drive forward the development of efficient and accurate analysis methods, we are designing a series of data challenges that will provide the scientific community with high-quality datasets for testing and evaluating new techniques. In this paper we present a description and results from the first such Science Data Challenge (SDC1). Based on SKA MID continuum simulated observations and covering three frequencies (560 MHz, 1400MHz and 9200 MHz) at three depths (8 h, 100 h and 1000 h), SDC1 asked participants to apply source detection, characterization and classification methods to simulated data. The challenge opened in November 2018, with nine teams submitting results by the deadline of April 2019. In this work we analyse the results for 8 of those teams, showcasing the variety of approaches that can be successfully used to find, characterise and classify sources in a deep, crowded field. The results also demonstrate the importance of building domain knowledge and expertise on this kind of analysis to obtain the best performance. As high-resolution observations begin revealing the true complexity of the sky, one of the outstanding challenges emerging from this analysis is the ability to deal with highly resolved and complex sources as effectively as the unresolved source population.
publishDate 2021
dc.date.none.fl_str_mv 2021-01-01T00:00:00Z
2021-01
2024-01-25T17:11:31Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/40295
url http://hdl.handle.net/10773/40295
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0035-8711
10.1093/mnras/staa3023
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Oxford University Press
publisher.none.fl_str_mv Oxford University Press
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137751866540032