Square Kilometre Array Science Data Challenge 1: analysis and results
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/40295 |
Resumo: | As the largest radio telescope in the world, the Square Kilometre Array (SKA) will lead the next generation of radio astronomy. The feats of engineering required to construct the telescope array will be matched only by the techniques developed to exploit the rich scientific value of the data. To drive forward the development of efficient and accurate analysis methods, we are designing a series of data challenges that will provide the scientific community with high-quality datasets for testing and evaluating new techniques. In this paper we present a description and results from the first such Science Data Challenge (SDC1). Based on SKA MID continuum simulated observations and covering three frequencies (560 MHz, 1400MHz and 9200 MHz) at three depths (8 h, 100 h and 1000 h), SDC1 asked participants to apply source detection, characterization and classification methods to simulated data. The challenge opened in November 2018, with nine teams submitting results by the deadline of April 2019. In this work we analyse the results for 8 of those teams, showcasing the variety of approaches that can be successfully used to find, characterise and classify sources in a deep, crowded field. The results also demonstrate the importance of building domain knowledge and expertise on this kind of analysis to obtain the best performance. As high-resolution observations begin revealing the true complexity of the sky, one of the outstanding challenges emerging from this analysis is the ability to deal with highly resolved and complex sources as effectively as the unresolved source population. |
id |
RCAP_6d6c3372cc078e35088d0ab06b04e837 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/40295 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Square Kilometre Array Science Data Challenge 1: analysis and resultsMethods: data analysisTechniques: image processingAstronomical data bases: miscellaneousGalaxies: statisticsRadio continuum: galaxiesAs the largest radio telescope in the world, the Square Kilometre Array (SKA) will lead the next generation of radio astronomy. The feats of engineering required to construct the telescope array will be matched only by the techniques developed to exploit the rich scientific value of the data. To drive forward the development of efficient and accurate analysis methods, we are designing a series of data challenges that will provide the scientific community with high-quality datasets for testing and evaluating new techniques. In this paper we present a description and results from the first such Science Data Challenge (SDC1). Based on SKA MID continuum simulated observations and covering three frequencies (560 MHz, 1400MHz and 9200 MHz) at three depths (8 h, 100 h and 1000 h), SDC1 asked participants to apply source detection, characterization and classification methods to simulated data. The challenge opened in November 2018, with nine teams submitting results by the deadline of April 2019. In this work we analyse the results for 8 of those teams, showcasing the variety of approaches that can be successfully used to find, characterise and classify sources in a deep, crowded field. The results also demonstrate the importance of building domain knowledge and expertise on this kind of analysis to obtain the best performance. As high-resolution observations begin revealing the true complexity of the sky, one of the outstanding challenges emerging from this analysis is the ability to deal with highly resolved and complex sources as effectively as the unresolved source population.Oxford University Press2024-01-25T17:11:31Z2021-01-01T00:00:00Z2021-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/40295eng0035-871110.1093/mnras/staa3023Bonaldi, A.T. AnBruggen, M.Burkutean, S.Coelho, B.Goodarzi, H.Hartley, P.Sandhu, P. K.Wu, C.L. YuHaghighi, M. H. ZhoolidehAntón, S.Bagheri, Z.Barbosa, D.Barraca, J. P.Bartashevich, D.Bergano, M.Bonato, M.Brand, J.Gasperin, F. deGiannetti, A.Dodson, R.Jain, P.Jaiswal, S.B. LaoB. LiuLiuzzo, E.Y. LuLukic, V.Maia, D.Marchili, N.Massardi, M.P. MohanMorgado, J. B.Panwar, M.Prabhakar, P.Ribeiro, V. A. R. M.Rygl, K. L. J.Ali, V. SabzSaremi, E.Schisano, E.Sheikhnezami, S.Sadr, A. VafaeiWong, A.Wong, O. I.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:18:25Zoai:ria.ua.pt:10773/40295Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:10:11.648746Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Square Kilometre Array Science Data Challenge 1: analysis and results |
title |
Square Kilometre Array Science Data Challenge 1: analysis and results |
spellingShingle |
Square Kilometre Array Science Data Challenge 1: analysis and results Bonaldi, A. Methods: data analysis Techniques: image processing Astronomical data bases: miscellaneous Galaxies: statistics Radio continuum: galaxies |
title_short |
Square Kilometre Array Science Data Challenge 1: analysis and results |
title_full |
Square Kilometre Array Science Data Challenge 1: analysis and results |
title_fullStr |
Square Kilometre Array Science Data Challenge 1: analysis and results |
title_full_unstemmed |
Square Kilometre Array Science Data Challenge 1: analysis and results |
title_sort |
Square Kilometre Array Science Data Challenge 1: analysis and results |
author |
Bonaldi, A. |
author_facet |
Bonaldi, A. T. An Bruggen, M. Burkutean, S. Coelho, B. Goodarzi, H. Hartley, P. Sandhu, P. K. Wu, C. L. Yu Haghighi, M. H. Zhoolideh Antón, S. Bagheri, Z. Barbosa, D. Barraca, J. P. Bartashevich, D. Bergano, M. Bonato, M. Brand, J. Gasperin, F. de Giannetti, A. Dodson, R. Jain, P. Jaiswal, S. B. Lao B. Liu Liuzzo, E. Y. Lu Lukic, V. Maia, D. Marchili, N. Massardi, M. P. Mohan Morgado, J. B. Panwar, M. Prabhakar, P. Ribeiro, V. A. R. M. Rygl, K. L. J. Ali, V. Sabz Saremi, E. Schisano, E. Sheikhnezami, S. Sadr, A. Vafaei Wong, A. Wong, O. I. |
author_role |
author |
author2 |
T. An Bruggen, M. Burkutean, S. Coelho, B. Goodarzi, H. Hartley, P. Sandhu, P. K. Wu, C. L. Yu Haghighi, M. H. Zhoolideh Antón, S. Bagheri, Z. Barbosa, D. Barraca, J. P. Bartashevich, D. Bergano, M. Bonato, M. Brand, J. Gasperin, F. de Giannetti, A. Dodson, R. Jain, P. Jaiswal, S. B. Lao B. Liu Liuzzo, E. Y. Lu Lukic, V. Maia, D. Marchili, N. Massardi, M. P. Mohan Morgado, J. B. Panwar, M. Prabhakar, P. Ribeiro, V. A. R. M. Rygl, K. L. J. Ali, V. Sabz Saremi, E. Schisano, E. Sheikhnezami, S. Sadr, A. Vafaei Wong, A. Wong, O. I. |
author2_role |
author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author |
dc.contributor.author.fl_str_mv |
Bonaldi, A. T. An Bruggen, M. Burkutean, S. Coelho, B. Goodarzi, H. Hartley, P. Sandhu, P. K. Wu, C. L. Yu Haghighi, M. H. Zhoolideh Antón, S. Bagheri, Z. Barbosa, D. Barraca, J. P. Bartashevich, D. Bergano, M. Bonato, M. Brand, J. Gasperin, F. de Giannetti, A. Dodson, R. Jain, P. Jaiswal, S. B. Lao B. Liu Liuzzo, E. Y. Lu Lukic, V. Maia, D. Marchili, N. Massardi, M. P. Mohan Morgado, J. B. Panwar, M. Prabhakar, P. Ribeiro, V. A. R. M. Rygl, K. L. J. Ali, V. Sabz Saremi, E. Schisano, E. Sheikhnezami, S. Sadr, A. Vafaei Wong, A. Wong, O. I. |
dc.subject.por.fl_str_mv |
Methods: data analysis Techniques: image processing Astronomical data bases: miscellaneous Galaxies: statistics Radio continuum: galaxies |
topic |
Methods: data analysis Techniques: image processing Astronomical data bases: miscellaneous Galaxies: statistics Radio continuum: galaxies |
description |
As the largest radio telescope in the world, the Square Kilometre Array (SKA) will lead the next generation of radio astronomy. The feats of engineering required to construct the telescope array will be matched only by the techniques developed to exploit the rich scientific value of the data. To drive forward the development of efficient and accurate analysis methods, we are designing a series of data challenges that will provide the scientific community with high-quality datasets for testing and evaluating new techniques. In this paper we present a description and results from the first such Science Data Challenge (SDC1). Based on SKA MID continuum simulated observations and covering three frequencies (560 MHz, 1400MHz and 9200 MHz) at three depths (8 h, 100 h and 1000 h), SDC1 asked participants to apply source detection, characterization and classification methods to simulated data. The challenge opened in November 2018, with nine teams submitting results by the deadline of April 2019. In this work we analyse the results for 8 of those teams, showcasing the variety of approaches that can be successfully used to find, characterise and classify sources in a deep, crowded field. The results also demonstrate the importance of building domain knowledge and expertise on this kind of analysis to obtain the best performance. As high-resolution observations begin revealing the true complexity of the sky, one of the outstanding challenges emerging from this analysis is the ability to deal with highly resolved and complex sources as effectively as the unresolved source population. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-01-01T00:00:00Z 2021-01 2024-01-25T17:11:31Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/40295 |
url |
http://hdl.handle.net/10773/40295 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0035-8711 10.1093/mnras/staa3023 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Oxford University Press |
publisher.none.fl_str_mv |
Oxford University Press |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137751866540032 |