Magnetic Bioactive Glass-Based Nanofibrous System for Bone Cancer Treatment
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/153501 |
Resumo: | Bone cancer is not the most common type, with approximately 1% of the total number of diagnosed cancers in the bone. However, the bone is one of the most prevalent locations for metastases, which means that other cancers can often spread to the bone. Conventional treatments such as chemo and radiotherapy in- volve the destruction and removal of cancerous cells but are not targeted to them, making the destruction of healthy cells inevitable. Magnetic hyperthermia has been emerging as a potential cancer treatment option since it is a targeted process with an effective treatment. Thus, a material with the capacity to perform magnetic hyperthermia but also regenerate bone constitutes the ideal form of bone cancer treatment. The primary purpose of this work was to develop, through the electrospinning technique, a hybrid membrane composed of a stack of two different nanofibers: porous poly(lactic acid) (PLA) nanofibers with magnetic nanoparticles (MNPs), and polyvinylpyrrolidone (PVP) nanofibers with mesoporous bioglass (MBG). This hybrid membrane makes for the possibility of performing magnetic hyperthermia by MNPs and can also be used to induce bone regeneration thanks to the bioactivity of MBG. Initially, a study was made to optimize the production process of PLA membranes through the elec- trospinning technique by varying the solution parameters, processing parameters, and atmospheric conditions to understand which condition was better for producing this membrane. MNPs were synthesized by chemical co-precipitation and coated with oleic acid (OA). PLA, PLA with MNPs, PVP with MBG, and the hybrid membranes were produced and analyzed by SEM, EDS, FTIR, XRD, and DSC-TGA to study each membrane's structure and morphology. Magnetic hyperthermia, degradation, swelling, bioactivity, and cytotoxicity studies were also performed. These characterization techniques evaluated each membrane's heating capacity, ability to function in the body, possibility of bone regeneration, and biocompatibility. The present work demonstrated the potential of using these membranes for magnetic hyperthermia and bone regeneration, offering an alternative way of support to bone cancer treatment. |
id |
RCAP_6e328f17f617cff57d3aa0357ab29d2c |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/153501 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Magnetic Bioactive Glass-Based Nanofibrous System for Bone Cancer TreatmentBone cancer treatmentmagnetic hyperthermiamagnetic nanoparticlespoly(lactic acid)mesoporous bioglasspolyvinylpyrrolidoneDomínio/Área Científica::Engenharia e Tecnologia::NanotecnologiaBone cancer is not the most common type, with approximately 1% of the total number of diagnosed cancers in the bone. However, the bone is one of the most prevalent locations for metastases, which means that other cancers can often spread to the bone. Conventional treatments such as chemo and radiotherapy in- volve the destruction and removal of cancerous cells but are not targeted to them, making the destruction of healthy cells inevitable. Magnetic hyperthermia has been emerging as a potential cancer treatment option since it is a targeted process with an effective treatment. Thus, a material with the capacity to perform magnetic hyperthermia but also regenerate bone constitutes the ideal form of bone cancer treatment. The primary purpose of this work was to develop, through the electrospinning technique, a hybrid membrane composed of a stack of two different nanofibers: porous poly(lactic acid) (PLA) nanofibers with magnetic nanoparticles (MNPs), and polyvinylpyrrolidone (PVP) nanofibers with mesoporous bioglass (MBG). This hybrid membrane makes for the possibility of performing magnetic hyperthermia by MNPs and can also be used to induce bone regeneration thanks to the bioactivity of MBG. Initially, a study was made to optimize the production process of PLA membranes through the elec- trospinning technique by varying the solution parameters, processing parameters, and atmospheric conditions to understand which condition was better for producing this membrane. MNPs were synthesized by chemical co-precipitation and coated with oleic acid (OA). PLA, PLA with MNPs, PVP with MBG, and the hybrid membranes were produced and analyzed by SEM, EDS, FTIR, XRD, and DSC-TGA to study each membrane's structure and morphology. Magnetic hyperthermia, degradation, swelling, bioactivity, and cytotoxicity studies were also performed. These characterization techniques evaluated each membrane's heating capacity, ability to function in the body, possibility of bone regeneration, and biocompatibility. The present work demonstrated the potential of using these membranes for magnetic hyperthermia and bone regeneration, offering an alternative way of support to bone cancer treatment.O cancro dos ossos não é o tipo de cancro mais comum; apenas aproximadamente 1% de todos os cancros ocorrre no osso. No entanto, o osso é um dos locais mais prevalentes para a ocorrência de metástases, o que significa que outros cancros se podem espalhar para o osso. Tratamentos convencionais como quimio e radioterapia envolvem a destruição e remoção de células cancerosas, mas não são unicamente direcionadas a estas, tornando inevitável a destruição de células saudáveis. A hipertermia magnética tem surgido como uma potencial opção de tratamento do cancro, uma vez que é um processo direcionado às células cancerosas e um tratamento eficaz. Assim, um material com capacidade de realizar hipertermia magnética, mas também rege- nerar osso, constitui a forma ideal de tratamento do cancro dos ossos. O objetivo principal deste trabalho foi desenvolver, através da técnica de eletrofiação, uma membrana híbrida composta por dois tipos de nanofibras diferentes, empilhadas uma em cima da outra: nanofibras poro- sas de ácido poliláctico (PLA) com nanopartículas magnéticas (MNPs) e nanofibras de polivinilpirrolidona (PVP) com biovidro mesoporoso (MBG). Esta membrana híbrida possibilita a realização de hipertermia mag- nética por MNPs e também pode ser utilizada para induzir a regeneração óssea graças à bioatividade do MBG. Inicialmente, foi feito um estudo para otimizar o processo de produção das membranas de PLA por eletrofiação variando os parâmetros da solução, parâmetros do processo e condições atmosféricas para enten- der as melhores condições para a produção desta membrana. As MNPs foram sintetizadas por co-precipitação química e revestidas com ácido oleico (OA). As membranas de PLA, PLA com MNPs, PVP com MBG, e as híbridas foram produzidas e analisadas por SEM, EDS, FTIR, XRD e DSC-TGA para estudar a estrutura e morfologia de cada membrana. Os estudos de hipertermia magnética, degradação, inchamento, bioatividade, e citotoxicidade também foram realizados. Isto tornou possível a avaliação da capacidade de aquecimento de cada membrana, capacidade de funcionar no corpo, possibilidade de regeneração óssea, e biocompatibilidade. Este trabalho demonstrou o potencial do uso destas membranas para hipertermia magnética e regene- ração óssea, oferecendo assim uma alternativa de suporte ao tratamento do cancro dos ossos.Borges, JoãoSoares, PaulaRUNPereira, João Pedro de Carvalho2023-06-02T18:39:29Z2022-122022-12-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/153501enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:35:58Zoai:run.unl.pt:10362/153501Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:55:17.101304Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Magnetic Bioactive Glass-Based Nanofibrous System for Bone Cancer Treatment |
title |
Magnetic Bioactive Glass-Based Nanofibrous System for Bone Cancer Treatment |
spellingShingle |
Magnetic Bioactive Glass-Based Nanofibrous System for Bone Cancer Treatment Pereira, João Pedro de Carvalho Bone cancer treatment magnetic hyperthermia magnetic nanoparticles poly(lactic acid) mesoporous bioglass polyvinylpyrrolidone Domínio/Área Científica::Engenharia e Tecnologia::Nanotecnologia |
title_short |
Magnetic Bioactive Glass-Based Nanofibrous System for Bone Cancer Treatment |
title_full |
Magnetic Bioactive Glass-Based Nanofibrous System for Bone Cancer Treatment |
title_fullStr |
Magnetic Bioactive Glass-Based Nanofibrous System for Bone Cancer Treatment |
title_full_unstemmed |
Magnetic Bioactive Glass-Based Nanofibrous System for Bone Cancer Treatment |
title_sort |
Magnetic Bioactive Glass-Based Nanofibrous System for Bone Cancer Treatment |
author |
Pereira, João Pedro de Carvalho |
author_facet |
Pereira, João Pedro de Carvalho |
author_role |
author |
dc.contributor.none.fl_str_mv |
Borges, João Soares, Paula RUN |
dc.contributor.author.fl_str_mv |
Pereira, João Pedro de Carvalho |
dc.subject.por.fl_str_mv |
Bone cancer treatment magnetic hyperthermia magnetic nanoparticles poly(lactic acid) mesoporous bioglass polyvinylpyrrolidone Domínio/Área Científica::Engenharia e Tecnologia::Nanotecnologia |
topic |
Bone cancer treatment magnetic hyperthermia magnetic nanoparticles poly(lactic acid) mesoporous bioglass polyvinylpyrrolidone Domínio/Área Científica::Engenharia e Tecnologia::Nanotecnologia |
description |
Bone cancer is not the most common type, with approximately 1% of the total number of diagnosed cancers in the bone. However, the bone is one of the most prevalent locations for metastases, which means that other cancers can often spread to the bone. Conventional treatments such as chemo and radiotherapy in- volve the destruction and removal of cancerous cells but are not targeted to them, making the destruction of healthy cells inevitable. Magnetic hyperthermia has been emerging as a potential cancer treatment option since it is a targeted process with an effective treatment. Thus, a material with the capacity to perform magnetic hyperthermia but also regenerate bone constitutes the ideal form of bone cancer treatment. The primary purpose of this work was to develop, through the electrospinning technique, a hybrid membrane composed of a stack of two different nanofibers: porous poly(lactic acid) (PLA) nanofibers with magnetic nanoparticles (MNPs), and polyvinylpyrrolidone (PVP) nanofibers with mesoporous bioglass (MBG). This hybrid membrane makes for the possibility of performing magnetic hyperthermia by MNPs and can also be used to induce bone regeneration thanks to the bioactivity of MBG. Initially, a study was made to optimize the production process of PLA membranes through the elec- trospinning technique by varying the solution parameters, processing parameters, and atmospheric conditions to understand which condition was better for producing this membrane. MNPs were synthesized by chemical co-precipitation and coated with oleic acid (OA). PLA, PLA with MNPs, PVP with MBG, and the hybrid membranes were produced and analyzed by SEM, EDS, FTIR, XRD, and DSC-TGA to study each membrane's structure and morphology. Magnetic hyperthermia, degradation, swelling, bioactivity, and cytotoxicity studies were also performed. These characterization techniques evaluated each membrane's heating capacity, ability to function in the body, possibility of bone regeneration, and biocompatibility. The present work demonstrated the potential of using these membranes for magnetic hyperthermia and bone regeneration, offering an alternative way of support to bone cancer treatment. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-12 2022-12-01T00:00:00Z 2023-06-02T18:39:29Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/153501 |
url |
http://hdl.handle.net/10362/153501 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138140176252928 |