Photodynamic therapy intheinactivation of bacteriophages with porphyrin and potentiators in wastewater

Detalhes bibliográficos
Autor(a) principal: Oliveira, Cristiana Paula Martins da Silva
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/29245
Resumo: Pathogenic viruses are frequently introduced into marine and estuarine waters through the discharge of treated and untreated sewage, since current treatments are unable to provide virus-free wastewater (WW) effluents, affecting the receiving waters quality and, consequently, human health. The removal of harmful constituents by the conventional treatments comprises a combination of chemical, physical and biological methods. Usually, WW from urban areas is secondarily, rarely tertiary, treated. Although the secondary effluent contains high concentrations of microorganisms, the effect of water dilution makes it acceptable in terms of quality indicators. In tertiary treatment, chlorination is the most common method used to ensure microbiological safety in tertiarily treated effluents. However, its massive utilization, both in free and combined chlorine forms, may lead to the formation of chemical disinfection by-products though the reaction with organic matter present in the effluents, being those chemicals toxic to aquatic organisms, representing potential health hazards. Unfortunately, these conventional methods are limited and may not be adequate to reach the quality levels specified by the guidelines. Photodynamic therapy (PDT) with porphyrins may be a promising approach for the inactivation of pathogens as they are effective in inactivating microorganisms without the formation of potentially toxic products. Some studies have reported an enhancer effect on antimicrobial photodynamic therapy (aPDT) by the combined used of some photosensitizer (PS) with potassium iodide (KI) and hydrogen peroxide (H2O2). The main objective of this study was to evaluate the aPDT efficacy of a PS based on a low-cost formulation constituted by five cationic porphyrins (Form) and its potentiation effect by KI and H2O2 in the inactivation of a T4-like bacteriophage in WW. The experiments were done in phosphate buffered saline and in filtered and non-filtered contaminated wastewater. The aPDT assays in filtered WW (0.45 μm pore-size) were performed with different concentrations of Form (1.0 to 10 μM). In a second phase was evaluated the effect of KI (100 mM) in the photodynamic action of Form (1.0 to 10 μM). The results of these experiments demonstrated that Form is efficient in filtered WW treatment and that the efficacy of bacteriophage photoinactivation is correlated with the concentration of the used PS. When combined with KI, the Form is clearly less effective to inactivate the bacteriophage. To evaluate if the organic matter present in water influences the efficiency of PS, the WW was filtered using three different pore-sized membranes (0.45, 0.30 and 0.22 μm). The results demonstrated that the increase of organic matter promote a significant decrease in the efficiency of Form. In order to evaluate if the efficiency of aPDT to inactivate bacteriophages is maintained when the treatments are performed in non-filtrated WW, the effect of Form alone (10 μM) and combined with H2O2 (2, 5 and 9%) in non-filtered WW was evaluated. The Form alone proved to be an efficient PS to photoinactivate the bacteriophage in non-filtered WW, but the presence of H2O2 enhanced the photodynamic effect. The FORM can be an effective alternative to control viruses in WW, particularly if combined with H2O2.
id RCAP_6e58a36adc3c927d9f43387b679469a8
oai_identifier_str oai:ria.ua.pt:10773/29245
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Photodynamic therapy intheinactivation of bacteriophages with porphyrin and potentiators in wastewaterAntimicrobial photodynamic therapyPorphyrinic formulationWastewaterBacteriophage T4-likePotassium iodideHydrogen peroxidePathogenic viruses are frequently introduced into marine and estuarine waters through the discharge of treated and untreated sewage, since current treatments are unable to provide virus-free wastewater (WW) effluents, affecting the receiving waters quality and, consequently, human health. The removal of harmful constituents by the conventional treatments comprises a combination of chemical, physical and biological methods. Usually, WW from urban areas is secondarily, rarely tertiary, treated. Although the secondary effluent contains high concentrations of microorganisms, the effect of water dilution makes it acceptable in terms of quality indicators. In tertiary treatment, chlorination is the most common method used to ensure microbiological safety in tertiarily treated effluents. However, its massive utilization, both in free and combined chlorine forms, may lead to the formation of chemical disinfection by-products though the reaction with organic matter present in the effluents, being those chemicals toxic to aquatic organisms, representing potential health hazards. Unfortunately, these conventional methods are limited and may not be adequate to reach the quality levels specified by the guidelines. Photodynamic therapy (PDT) with porphyrins may be a promising approach for the inactivation of pathogens as they are effective in inactivating microorganisms without the formation of potentially toxic products. Some studies have reported an enhancer effect on antimicrobial photodynamic therapy (aPDT) by the combined used of some photosensitizer (PS) with potassium iodide (KI) and hydrogen peroxide (H2O2). The main objective of this study was to evaluate the aPDT efficacy of a PS based on a low-cost formulation constituted by five cationic porphyrins (Form) and its potentiation effect by KI and H2O2 in the inactivation of a T4-like bacteriophage in WW. The experiments were done in phosphate buffered saline and in filtered and non-filtered contaminated wastewater. The aPDT assays in filtered WW (0.45 μm pore-size) were performed with different concentrations of Form (1.0 to 10 μM). In a second phase was evaluated the effect of KI (100 mM) in the photodynamic action of Form (1.0 to 10 μM). The results of these experiments demonstrated that Form is efficient in filtered WW treatment and that the efficacy of bacteriophage photoinactivation is correlated with the concentration of the used PS. When combined with KI, the Form is clearly less effective to inactivate the bacteriophage. To evaluate if the organic matter present in water influences the efficiency of PS, the WW was filtered using three different pore-sized membranes (0.45, 0.30 and 0.22 μm). The results demonstrated that the increase of organic matter promote a significant decrease in the efficiency of Form. In order to evaluate if the efficiency of aPDT to inactivate bacteriophages is maintained when the treatments are performed in non-filtrated WW, the effect of Form alone (10 μM) and combined with H2O2 (2, 5 and 9%) in non-filtered WW was evaluated. The Form alone proved to be an efficient PS to photoinactivate the bacteriophage in non-filtered WW, but the presence of H2O2 enhanced the photodynamic effect. The FORM can be an effective alternative to control viruses in WW, particularly if combined with H2O2.Os vírus patogénicos são frequentemente introduzidos nas águas marinhas e estuarinas através da descarga de esgoto tratado e não tratado, uma vez que os tratamentos atuais não inativam os vírus presentes nas águas residuais (WW), afetando a qualidade das águas recetoras e, consequentemente, a saúde humana. Nos tratamentos convencionais, a remoção de constituintes nocivos consiste no uso de métodos químicos, físicos e biológicos. Geralmente, a WW de áreas urbanas é tratada secundariamente e não terciariamente. Embora o efluente secundário contenha altas concentrações de microrganismos, o efeito da diluição na água torna-o aceitável em termos de indicadores de qualidade. A cloração é o método mais comum usado para garantir a segurança microbiológica em efluentes tratados terciariamente. No entanto, a sua utilização maciça, tanto na forma de cloro livre como combinada, pode levar à formação de subprodutos químicos como resultado da reação com a matéria orgânica presente nos efluentes, sendo esses produtos químicos tóxicos para os organismos aquáticos, apresentando riscos para a saúde. Os métodos convencionais são limitados e podem não ser adequados para manter os níveis de qualidade especificados nas diretrizes. As porfirinas quando usadas como fotossensibilizadores (PS) na terapia fotodinâmica (PDT) podem ser desinfetantes promissores para a inativação de microrganismos patógenicos, pois são eficazes na inativação de microrganismos sem formação de produtos tóxicos. Alguns estudos mostraram efeito potenciador de alguns PS usados em terapia fotodinâmica antimicrobiana (aPDT) quando estes são usados em combinação com iodeto de potássio (KI) e peróxido de hidrogénio (H2O2). O principal objetivo deste estudo foi avaliar a eficácia da aPDT de um PS baseado numa formulação de baixo custo constituída por cinco porfirinas catiónicas (Form) e o seu efeito potenciador por KI e H2O2 na inativação de um bacteriófago tipo T4. As experiências foram realizadas em solução salina tamponada com fosfato e em água residual contaminada filtrada e não filtrada. Os ensaios de aPDT em WW filtrada (tamanho do poro de 0,45 μm) foram realizados com diferentes concentrações de Form (1,0 a 10 μM). Numa segunda fase foi avaliado o efeito do KI (100 mM) na ação fotodinâmica da FORM (1,0 a 10 μM). Os resultados dessas experiências demonstraram que a Form é eficiente no tratamento de WW filtrada e que a eficácia da fotoinativação de bacteriófagos está correlacionada com a concentração do PS usado. Quando combinada com o KI, a Form é claramente menos eficaz na inativação do bacteriófago. Para avaliar se a matéria orgânica presente na água influencia a eficiência do PS, a WW foi filtrada usando três membranas com tamanho de poros diferentes (0,45, 0,30 e 0,22 μm). Os resultados mostraram que o aumento da matéria orgânica promove uma diminuição significativa na eficiência da Form. Para avaliar se a eficiência da aPDT para inativar bacteriófagos é mantida quando os tratamentos são realizados em WW não filtrada, o efeito da Form sozinha (10 μM) e combinado com H2O2 (2, 5 e 9%) em WW não filtrada foi avaliado. A Form por si só provou ser um PS eficiente para fotoinativar o bacteriófago em WW não filtrada, mas a presença de H2O2 aumentou significativamente o efeito fotodinâmico. A Form pode ser uma alternativa eficaz para controlar vírus na WW, principalmente se combinada com H2O2.2022-01-06T00:00:00Z2019-12-17T00:00:00Z2019-12-17info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/29245engOliveira, Cristiana Paula Martins da Silvainfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:56:37Zoai:ria.ua.pt:10773/29245Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:01:38.450033Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Photodynamic therapy intheinactivation of bacteriophages with porphyrin and potentiators in wastewater
title Photodynamic therapy intheinactivation of bacteriophages with porphyrin and potentiators in wastewater
spellingShingle Photodynamic therapy intheinactivation of bacteriophages with porphyrin and potentiators in wastewater
Oliveira, Cristiana Paula Martins da Silva
Antimicrobial photodynamic therapy
Porphyrinic formulation
Wastewater
Bacteriophage T4-like
Potassium iodide
Hydrogen peroxide
title_short Photodynamic therapy intheinactivation of bacteriophages with porphyrin and potentiators in wastewater
title_full Photodynamic therapy intheinactivation of bacteriophages with porphyrin and potentiators in wastewater
title_fullStr Photodynamic therapy intheinactivation of bacteriophages with porphyrin and potentiators in wastewater
title_full_unstemmed Photodynamic therapy intheinactivation of bacteriophages with porphyrin and potentiators in wastewater
title_sort Photodynamic therapy intheinactivation of bacteriophages with porphyrin and potentiators in wastewater
author Oliveira, Cristiana Paula Martins da Silva
author_facet Oliveira, Cristiana Paula Martins da Silva
author_role author
dc.contributor.author.fl_str_mv Oliveira, Cristiana Paula Martins da Silva
dc.subject.por.fl_str_mv Antimicrobial photodynamic therapy
Porphyrinic formulation
Wastewater
Bacteriophage T4-like
Potassium iodide
Hydrogen peroxide
topic Antimicrobial photodynamic therapy
Porphyrinic formulation
Wastewater
Bacteriophage T4-like
Potassium iodide
Hydrogen peroxide
description Pathogenic viruses are frequently introduced into marine and estuarine waters through the discharge of treated and untreated sewage, since current treatments are unable to provide virus-free wastewater (WW) effluents, affecting the receiving waters quality and, consequently, human health. The removal of harmful constituents by the conventional treatments comprises a combination of chemical, physical and biological methods. Usually, WW from urban areas is secondarily, rarely tertiary, treated. Although the secondary effluent contains high concentrations of microorganisms, the effect of water dilution makes it acceptable in terms of quality indicators. In tertiary treatment, chlorination is the most common method used to ensure microbiological safety in tertiarily treated effluents. However, its massive utilization, both in free and combined chlorine forms, may lead to the formation of chemical disinfection by-products though the reaction with organic matter present in the effluents, being those chemicals toxic to aquatic organisms, representing potential health hazards. Unfortunately, these conventional methods are limited and may not be adequate to reach the quality levels specified by the guidelines. Photodynamic therapy (PDT) with porphyrins may be a promising approach for the inactivation of pathogens as they are effective in inactivating microorganisms without the formation of potentially toxic products. Some studies have reported an enhancer effect on antimicrobial photodynamic therapy (aPDT) by the combined used of some photosensitizer (PS) with potassium iodide (KI) and hydrogen peroxide (H2O2). The main objective of this study was to evaluate the aPDT efficacy of a PS based on a low-cost formulation constituted by five cationic porphyrins (Form) and its potentiation effect by KI and H2O2 in the inactivation of a T4-like bacteriophage in WW. The experiments were done in phosphate buffered saline and in filtered and non-filtered contaminated wastewater. The aPDT assays in filtered WW (0.45 μm pore-size) were performed with different concentrations of Form (1.0 to 10 μM). In a second phase was evaluated the effect of KI (100 mM) in the photodynamic action of Form (1.0 to 10 μM). The results of these experiments demonstrated that Form is efficient in filtered WW treatment and that the efficacy of bacteriophage photoinactivation is correlated with the concentration of the used PS. When combined with KI, the Form is clearly less effective to inactivate the bacteriophage. To evaluate if the organic matter present in water influences the efficiency of PS, the WW was filtered using three different pore-sized membranes (0.45, 0.30 and 0.22 μm). The results demonstrated that the increase of organic matter promote a significant decrease in the efficiency of Form. In order to evaluate if the efficiency of aPDT to inactivate bacteriophages is maintained when the treatments are performed in non-filtrated WW, the effect of Form alone (10 μM) and combined with H2O2 (2, 5 and 9%) in non-filtered WW was evaluated. The Form alone proved to be an efficient PS to photoinactivate the bacteriophage in non-filtered WW, but the presence of H2O2 enhanced the photodynamic effect. The FORM can be an effective alternative to control viruses in WW, particularly if combined with H2O2.
publishDate 2019
dc.date.none.fl_str_mv 2019-12-17T00:00:00Z
2019-12-17
2022-01-06T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/29245
url http://hdl.handle.net/10773/29245
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137671874871296